Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Res Sq ; 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38260641

RESUMEN

In metazoans release of mitochondrial DNA or retrotransposon cDNA to cytoplasm can cause sterile inflammation and disease 1. Cytoplasmic nucleases degrade these DNA species to limit inflammation 2,3. It remains unknown whether degradation these DNA also prevents nuclear genome instability. To address this question, we decided to identify the nuclease regulating transfer of these cytoplasmic DNA species to the nucleus. We used an amplicon sequencing-based method in yeast enabling analysis of millions of DSB repair products. Nuclear mtDNA (NUMTs) and retrotransposon cDNA insertions increase dramatically in nondividing stationary phase cells. Yeast EndoG (Nuc1) nuclease limits insertions of cDNA and transfer of very long mtDNA (>10 kb) that forms unstable circles or rarely insert in the genome, but it promotes formation of short NUMTs (~45-200 bp). Nuc1 also regulates transfer of cytoplasmic DNA to nucleus in aging or during meiosis. We propose that Nuc1 preserves genome stability by degrading retrotransposon cDNA and long mtDNA, while short NUMTs can originate from incompletely degraded mtDNA. This work suggests that nucleases eliminating cytoplasmic DNA play a role in preserving genome stability.

2.
Geroscience ; 46(1): 1107-1127, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37420111

RESUMEN

Adipose tissue is an important endocrine organ that regulates metabolism, immune response and aging in mammals. Healthy adipocytes promote tissue homeostasis and longevity. SIRT1, a conserved NAD+-dependent deacetylase, negatively regulates adipogenic differentiation by deacetylating and inhibiting PPAR-γ. However, knocking out SIRT1 in mesenchymal stem cells (MSCs) in mice not only causes defects in osteogenesis, but also results in the loss of adipose tissues, suggesting that SIRT1 is also important for adipogenic differentiation.Here, we report that severe impairment of SIRT1 function in MSCs caused significant defects and cellular senescence during adipogenic differentiation. These were observed only when inhibiting SIRT1 during adipogenesis, not when SIRT1 inhibition was imposed before or after adipogenic differentiation. Cells generate high levels of reactive oxygen species (ROS) during adipogenic differentiation. Inhibiting SIRT1 during differentiation resulted in impaired oxidative stress response. Increased oxidative stress with H2O2 or SOD2 knockdown phenocopied SIRT1 inhibition. Consistent with these observations, we found increased p16 levels and senescence associated ß-galactosidase activities in the inguinal adipose tissue of MSC-specific SIRT1 knockout mice. Furthermore, previously identified SIRT1 targets involved in oxidative stress response, FOXO3 and SUV39H1 were both required for healthy adipocyte formation during differentiation. Finally, senescent adipocytes produced by SIRT1 inhibition showed decreased Akt phosphorylation in response to insulin, a lack of response to adipocytes browning signals, and increased survival for cancer cells under chemotherapy drug treatments. These findings suggest a novel safeguard function for SIRT1 in regulating MSC adipogenic differentiation, distinct from its roles in suppressing adipogenic differentiation.


Asunto(s)
Adipogénesis , Sirtuina 1 , Animales , Ratones , Diferenciación Celular , Senescencia Celular/fisiología , Peróxido de Hidrógeno , Mamíferos/metabolismo
3.
Trends Genet ; 39(10): 715-716, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37419698

RESUMEN

The mechanisms that underlie increased cryptic transcription during senescence and aging have been poorly understood. Sen et al. recently identified cryptic transcription start sites (cTSSs) and chromatin state changes that may contribute to cTSS activation in mammals. Their results indicate that enhancer-promoter conversion may drive cryptic transcription in senescence.


Asunto(s)
Envejecimiento , Cromatina , Animales , Cromatina/genética , Envejecimiento/genética , Regiones Promotoras Genéticas , Secuencias Reguladoras de Ácidos Nucleicos , Mamíferos/genética , Transcripción Genética
4.
bioRxiv ; 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38168242

RESUMEN

In metazoans release of mitochondrial DNA or retrotransposon cDNA to cytoplasm can cause sterile inflammation and disease. Cytoplasmic nucleases degrade these DNA species to limit inflammation. It remains unknown whether degradation these DNA also prevents nuclear genome instability. To address this question, we decided to identify the nuclease regulating transfer of these cytoplasmic DNA species to the nucleus. We used an amplicon sequencing-based method in yeast enabling analysis of millions of DSB repair products. Nu clear mt DNA (NUMTs) and retrotransposon cDNA insertions increase dramatically in nondividing stationary phase cells. Yeast EndoG (Nuc1) nuclease limits insertions of cDNA and transfer of very long mtDNA (>10 kb) that forms unstable circles or rarely insert in the genome, but it promotes formation of short NUMTs (∼45-200 bp). Nuc1 also regulates transfer of cytoplasmic DNA to nucleus in aging or during meiosis. We propose that Nuc1 preserves genome stability by degrading retrotransposon cDNA and long mtDNA, while short NUMTs can originate from incompletely degraded mtDNA. This work suggests that nucleases eliminating cytoplasmic DNA play a role in preserving genome stability.

5.
Brief Funct Genomics ; 21(1): 56-61, 2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-34050364

RESUMEN

Cryptic transcription, the initiation of transcription from non-promoter regions within a gene body, is a type of transcriptional dysregulation that occurs throughout eukaryotes. In mammals, cryptic transcription is normally repressed at the level of chromatin, and this process is increased upon perturbation of complexes that increase intragenic histone H3 lysine 4 methylation or decrease intragenic H3 lysine 36 methylation, DNA methylation, or nucleosome occupancy. Significantly, similar changes to chromatin structure occur during aging, and, indeed, recent work indicates that cryptic transcription is elevated during aging in mammalian stem cells. Although increased cryptic transcription is known to promote aging in yeast, whether elevated cryptic transcription also contributes to mammalian aging is unclear. There is ample evidence that perturbations known to increase cryptic transcription are deleterious in embryonic and adult stem cells, and in some cases phenocopy certain aging phenotypes. Furthermore, an increase in cryptic transcription requires or impedes pathways that are known to have reduced function during aging, potentially exacerbating other aging phenotypes. Thus, we propose that increased cryptic transcription contributes to mammalian stem cell aging.


Asunto(s)
Cromatina , Lisina , Envejecimiento/genética , Animales , Cromatina/metabolismo , Proteínas de Unión al ADN/metabolismo , Histonas/metabolismo , Lisina/genética , Lisina/metabolismo , Mamíferos/genética , Saccharomyces cerevisiae/genética , Transcripción Genética
6.
Nat Aging ; 1(8): 684-697, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34746802

RESUMEN

A repressive chromatin state featuring trimethylated lysine 36 on histone H3 (H3K36me3) and DNA methylation suppresses cryptic transcription in embryonic stem cells. Cryptic transcription is elevated with age in yeast and nematodes, and reducing it extends yeast lifespan, though whether this occurs in mammals is unknown. We show that cryptic transcription is elevated in aged mammalian stem cells, including murine hematopoietic stem cells (mHSCs) and neural stem cells (NSCs) and human mesenchymal stem cells (hMSCs). Precise mapping allowed quantification of age-associated cryptic transcription in hMSCs aged in vitro. Regions with significant age-associated cryptic transcription have a unique chromatin signature: decreased H3K36me3 and increased H3K4me1, H3K4me3, and H3K27ac with age. Genomic regions undergoing such changes resemble known promoter sequences and are bound by TBP even in young cells. Hence, the more permissive chromatin state at intragenic cryptic promoters likely underlies increased cryptic transcription in aged mammalian stem cells.


Asunto(s)
Cromatina , Células Madre Hematopoyéticas , Células Madre Mesenquimatosas , Células-Madre Neurales , Animales , Humanos , Ratones , Envejecimiento/genética , Cromatina/genética , Metilación de ADN/genética , Células Madre Embrionarias/metabolismo , Células Madre Hematopoyéticas/metabolismo , Células-Madre Neurales/metabolismo , Células Madre Mesenquimatosas/metabolismo , Transcripción Genética
7.
Geroscience ; 43(5): 2573-2593, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34241809

RESUMEN

Calorie restriction (CR) is the most robust longevity intervention, extending lifespan from yeast to mammals. Numerous conserved pathways regulating aging and mediating CR have been identified; however, the overall proteomic changes during these conditions remain largely unexplored. We compared proteomes between young and replicatively aged yeast cells under normal and CR conditions using the Stable-Isotope Labeling by Amino acids in Cell culture (SILAC) quantitative proteomics and discovered distinct signatures in the aging proteome. We found remarkable proteomic similarities between aged and CR cells, including induction of stress response pathways, providing evidence that CR pathways are engaged in aged cells. These observations also uncovered aberrant changes in mitochondria membrane proteins as well as a proteolytic cellular state in old cells. These proteomics analyses help identify potential genes and pathways that have causal effects on longevity.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Animales , Restricción Calórica , Proteoma , Proteómica , Saccharomyces cerevisiae/genética
8.
Nat Commun ; 12(1): 1981, 2021 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-33790287

RESUMEN

Histone acetylations are important epigenetic markers for transcriptional activation in response to metabolic changes and various stresses. Using the high-throughput SEquencing-Based Yeast replicative Lifespan screen method and the yeast knockout collection, we demonstrate that the HDA complex, a class-II histone deacetylase (HDAC), regulates aging through its target of acetylated H3K18 at storage carbohydrate genes. We find that, in addition to longer lifespan, disruption of HDA results in resistance to DNA damage and osmotic stresses. We show that these effects are due to increased promoter H3K18 acetylation and transcriptional activation in the trehalose metabolic pathway in the absence of HDA. Furthermore, we determine that the longevity effect of HDA is independent of the Cyc8-Tup1 repressor complex known to interact with HDA and coordinate transcriptional repression. Silencing the HDA homologs in C. elegans and Drosophila increases their lifespan and delays aging-associated physical declines in adult flies. Hence, we demonstrate that this HDAC controls an evolutionarily conserved longevity pathway.


Asunto(s)
Envejecimiento/genética , Histona Desacetilasas/genética , Longevidad/genética , Trehalosa/metabolismo , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Activación Enzimática/genética , Histona Desacetilasas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
9.
Sci Rep ; 11(1): 7143, 2021 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-33785798

RESUMEN

We proposed a novel interaction potential landscape approach to map the systems-level profile changes of gene networks during replicative aging in Saccharomyces cerevisiae. This approach enabled us to apply quasi-potentials, the negative logarithm of the probabilities, to calibrate the elevation of the interaction landscapes with young cells as a reference state. Our approach detected opposite landscape changes based on protein abundances from transcript levels, especially for intra-essential gene interactions. We showed that essential proteins play different roles from hub proteins on the age-dependent interaction potential landscapes. We verified that hub proteins tend to avoid other hub proteins, but essential proteins prefer to interact with other essential proteins. Overall, we showed that the interaction potential landscape is promising for inferring network profile change during aging and that the essential hub proteins may play an important role in the uncoupling between protein and transcript levels during replicative aging.


Asunto(s)
Senescencia Celular , Mapas de Interacción de Proteínas , Saccharomyces cerevisiae/metabolismo
10.
PLoS One ; 16(3): e0246988, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33730031

RESUMEN

Microfluidic-based assays have become effective high-throughput approaches to examining replicative aging of budding yeast cells. Deep learning may offer an efficient way to analyze a large number of images collected from microfluidic experiments. Here, we compare three deep learning architectures to classify microfluidic time-lapse images of dividing yeast cells into categories that represent different stages in the yeast replicative aging process. We found that convolutional neural networks outperformed capsule networks in terms of accuracy, precision, and recall. The capsule networks had the most robust performance in detecting one specific category of cell images. An ensemble of three best-fitted single-architecture models achieves the highest overall accuracy, precision, and recall due to complementary performances. In addition, extending classification classes and data augmentation of the training dataset can improve the predictions of the biological categories in our study. This work lays a useful framework for sophisticated deep-learning processing of microfluidic-based assays of yeast replicative aging.


Asunto(s)
División Celular , Aprendizaje Profundo , Procesamiento de Imagen Asistido por Computador/métodos , Dispositivos Laboratorio en un Chip , Imagen Molecular/instrumentación , Levaduras/citología
11.
Nature ; 590(7847): 655-659, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33473214

RESUMEN

Break-induced replication (BIR) repairs one-ended double-strand breaks in DNA similar to those formed by replication collapse or telomere erosion, and it has been implicated in the initiation of genome instability in cancer and other human diseases1,2. Previous studies have defined the enzymes that are required for BIR1-5; however, understanding of initial and extended BIR synthesis, and of how the migrating D-loop proceeds through known replication roadblocks, has been precluded by technical limitations. Here we use a newly developed assay to show that BIR synthesis initiates soon after strand invasion and proceeds more slowly than S-phase replication. Without primase, leading strand synthesis is initiated efficiently, but is unable to proceed beyond 30 kilobases, suggesting that primase is needed for stabilization of the nascent leading strand. DNA synthesis can initiate in the absence of Pif1 or Pol32, but does not proceed efficiently. Interstitial telomeric DNA disrupts and terminates BIR progression, and BIR initiation is suppressed by transcription proportionally to the transcription level. Collisions between BIR and transcription lead to mutagenesis and chromosome rearrangements at levels that exceed instabilities induced by transcription during normal replication. Together, these results provide fundamental insights into the mechanism of BIR and how BIR contributes to genome instability.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN , Replicación del ADN , Saccharomyces cerevisiae , Cromosomas Fúngicos/genética , ADN Helicasas/deficiencia , ADN Primasa/metabolismo , ADN de Hongos/biosíntesis , ADN Polimerasa Dirigida por ADN/deficiencia , Inestabilidad Genómica , Cinética , Mutagénesis , Mutación , Fase S , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae , Telómero/genética , Factores de Tiempo , Transcripción Genética
13.
Methods Mol Biol ; 2144: 1-6, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32410020

RESUMEN

The replicative aging of the budding yeast, Saccharomyces cerevisiae, has been a useful model for dissecting the molecular mechanisms of the aging process. Traditionally, the replicative lifespan (RLS) is measured by manually dissecting mother cells from daughter cells, which is a very tedious process. Since 2012, several microfluidic systems have been developed to automate the dissection process, significantly accelerating RLS determination. Here, we describe a detailed protocol of RLS measurement using a ommercially available microfluidic system based on the HYAA chip design, which enables data collection of up to 8000 cells in a single experiment.


Asunto(s)
Senescencia Celular/genética , Replicación del ADN/genética , Microfluídica/métodos , Saccharomyces cerevisiae/genética , División Celular/genética , Longevidad/genética , Proteínas de Saccharomyces cerevisiae/genética
14.
Aging Cell ; 19(4): e13129, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32157780

RESUMEN

Histone acetyltransferases (HATs) are important enzymes that transfer acetyl groups onto histones and thereby regulate both gene expression and chromosomal structures. Previous work has shown that the activation of sirtuins, which are histone deacetylases, can extend lifespan. This suggests that inhibiting HATs may have a similar beneficial effect. In the present study, we utilized a range of HAT inhibitors or heterozygous Gcn5 and Ngg1 mutants to demonstrate marked yeast life extension. In human cell lines, HAT inhibitors and selective RNAi-mediated Gcn5 or Ngg1 knockdown reduced the levels of aging markers and promoted proliferation in senescent cells. Furthermore, this observed lifespan extension was associated with the acetylation of histone H3 rather than that of H4. Specifically, it was dependent upon H3K9Ac and H3K18Ac modifications. We also found that the ability of caloric restriction to prolong lifespan is Gcn5-, Ngg1-, H3K9-, and H3K18-dependent. Transcriptome analysis revealed that these changes were similar to those associated with heat shock and were inversely correlated with the gene expression profiles of aged yeast and aged worms. Through a bioinformatic analysis, we also found that HAT inhibition activated subtelomeric genes in human cell lines. Together, our results suggest that inhibiting the HAT Gcn5 may be an effective means of increasing longevity.


Asunto(s)
Histona Acetiltransferasas/antagonistas & inhibidores , Inhibidores de Histona Desacetilasas/farmacología , Longevidad , Proteínas de Saccharomyces cerevisiae/antagonistas & inhibidores , Factores de Transcripción p300-CBP/antagonistas & inhibidores , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Senescencia Celular/efectos de los fármacos , Histona Acetiltransferasas/genética , Histona Acetiltransferasas/metabolismo , Humanos , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción p300-CBP/genética , Factores de Transcripción p300-CBP/metabolismo
15.
Elife ; 92020 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-32043463

RESUMEN

Guanine-rich DNA sequences can fold into four-stranded G-quadruplex (G4-DNA) structures. G4-DNA regulates replication and transcription, at least in cancer cells. Here, we demonstrate that, in neurons, pharmacologically stabilizing G4-DNA with G4 ligands strongly downregulates the Atg7 gene. Atg7 is a critical gene for the initiation of autophagy that exhibits decreased transcription with aging. Using an in vitro assay, we show that a putative G-quadruplex-forming sequence (PQFS) in the first intron of the Atg7 gene folds into a G4. An antibody specific to G4-DNA and the G4-DNA-binding protein PC4 bind to the Atg7 PQFS. Mice treated with a G4 stabilizer develop memory deficits. Brain samples from aged mice contain G4-DNA structures that are absent in brain samples from young mice. Overexpressing the G4-DNA helicase Pif1 in neurons exposed to the G4 stabilizer improves phenotypes associated with G4-DNA stabilization. Our findings indicate that G4-DNA is a novel pathway for regulating autophagy in neurons.


Asunto(s)
Proteína 7 Relacionada con la Autofagia/fisiología , Autofagia , G-Cuádruplex , Neuronas/fisiología , Aminoquinolinas , Animales , Encéfalo/metabolismo , ADN Helicasas/metabolismo , Humanos , Trastornos de la Memoria , Ratones , Ácidos Picolínicos , Cultivo Primario de Células , Ratas
16.
Hum Genet ; 139(3): 371-380, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31900586

RESUMEN

Dysfunction and dysregulation at multiple levels, from organismal to molecular, are associated with the biological process of aging. In a eukaryotic nucleus, multiple lines of evidence have shown that the fundamental structure of chromatin is affected by aging. Not only euchromatic and heterochromatic regions shift locations, global changes, such as reduced levels of histones, have been reported for certain aged cell types and tissues. The physiological effects caused by such broad chromatin changes are complex and the cell's responses to it can be profound and in turn influence the aging process. In this review, we summarize recent findings on the interplay between chromatin architecture and aging with an emphasis on the cellular response to chromatin stress and its antagonistic effects on aging.


Asunto(s)
Envejecimiento/fisiología , Cromatina/fisiología , Estrés Fisiológico/fisiología , Animales , Núcleo Celular/fisiología , Histonas/fisiología , Humanos
17.
Cell Signal ; 66: 109496, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31816398

RESUMEN

Mitochondria plays a key role in regulating cell death process under stress conditions and it has been indicated that NAMPT overexpression promotes cell survival under genotoxic stress by maintaining mitochondrial NAD+ level. NAMPT is a rate-limiting enzyme for NAD+ production in mammalian cells and it was suggested that NAMPT and NMNAT3 are responsible for mitochondrial NAD+ production to maintain mitochondrial NAD+ pool. However, subsequent studies suggested mitochondrial may lack the NAMPT-NMANT3 pathway to maintain NAD+ level. Therefore, how NAMPT overexpression rescues mitochondrial NAD+ content to promote cell survival in response to genotoxic stress remains elusive. Here, we show that NAMPT promotes cell survival under oxidative stress via both SIRT1 dependent p53-CD38 pathway and SIRT1 independent NRF2-PPARα/AMPKα pathway, and the NRF2-PPARα/AMPKα pathway plays a more profound role in facilitating cell survival than the SIRT1-p53-CD38 pathway does. Mitochondrial content and membrane potential were significantly reduced in response to H2O2 treatment, whereas activated NRF2-PPARα/AMPKα pathway by NAMPT overexpression rescued the mitochondrial membrane potential and content, suggesting that maintained mitochondrial content and integrity by NAMPT overexpression might be one of the key mechanisms to maintain mitochondrial NAD+ level and subsequently dictate cell survival under oxidative stress. Our results indicated that NRF2 is a novel down-stream target of NAMPT, which mediates anti-apoptosis function of NAMPT via maintaining mitochondrial content and membrane potential.


Asunto(s)
Citocinas/fisiología , Mitocondrias/metabolismo , NAD/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Nicotinamida Fosforribosiltransferasa/fisiología , Estrés Oxidativo , Proteínas Quinasas Activadas por AMP/metabolismo , Supervivencia Celular , Fibroblastos , Células HEK293 , Humanos , PPAR alfa/metabolismo
18.
Sci Adv ; 5(7): eaav1165, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31309140

RESUMEN

Changes in chromatin organization occur during aging. Overexpression of histones partially alleviates these changes and promotes longevity. We report that deletion of the histone H3-H4 minor locus HHT1-HHF1 extended the replicative life span of Saccharomyces cerevisiae. This longevity effect was mediated through TOR signaling inhibition. We present evidence for evolutionarily conserved transcriptional and phenotypic responses to defects in chromatin structure, collectively termed the chromatin architectural defect (CAD) response. Promoters of the CAD response genes were sensitive to histone dosage, with HHT1-HHF1 deletion, nucleosome occupancy was reduced at these promoters allowing transcriptional activation induced by stress response transcription factors Msn2 and Gis1, both of which were required for the life-span extension of hht1-hhf1Δ. Therefore, we conclude that the CAD response induced by moderate chromatin defects promotes longevity.


Asunto(s)
Cromatina/genética , Cromatina/metabolismo , Longevidad/genética , Eliminación de Gen , Dosificación de Gen , Perfilación de la Expresión Génica , Regulación Fúngica de la Expresión Génica , Genes Fúngicos , Histonas/genética , Histonas/metabolismo , Modelos Biológicos , Mutación , Saccharomyces cerevisiae/fisiología , Transducción de Señal , Estrés Fisiológico
19.
Cell ; 177(3): 622-638.e22, 2019 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-31002797

RESUMEN

DNA repair has been hypothesized to be a longevity determinant, but the evidence for it is based largely on accelerated aging phenotypes of DNA repair mutants. Here, using a panel of 18 rodent species with diverse lifespans, we show that more robust DNA double-strand break (DSB) repair, but not nucleotide excision repair (NER), coevolves with longevity. Evolution of NER, unlike DSB, is shaped primarily by sunlight exposure. We further show that the capacity of the SIRT6 protein to promote DSB repair accounts for a major part of the variation in DSB repair efficacy between short- and long-lived species. We dissected the molecular differences between a weak (mouse) and a strong (beaver) SIRT6 protein and identified five amino acid residues that are fully responsible for their differential activities. Our findings demonstrate that DSB repair and SIRT6 have been optimized during the evolution of longevity, which provides new targets for anti-aging interventions.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN , Longevidad/genética , Sirtuinas/metabolismo , Secuencia de Aminoácidos , Animales , Peso Corporal , Roturas del ADN de Doble Cadena/efectos de la radiación , Evolución Molecular , Fibroblastos/citología , Fibroblastos/metabolismo , Técnicas de Inactivación de Genes , Humanos , Cinética , Masculino , Mutagénesis , Filogenia , Roedores/clasificación , Alineación de Secuencia , Sirtuinas/química , Sirtuinas/genética , Rayos Ultravioleta
20.
Mol Cell ; 73(4): 684-698.e8, 2019 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-30773298

RESUMEN

Accumulation of senescent cells during aging contributes to chronic inflammation and age-related diseases. While senescence is associated with profound alterations of the epigenome, a systematic view of epigenetic factors in regulating senescence is lacking. Here, we curated a library of short hairpin RNAs for targeted silencing of all known epigenetic proteins and performed a high-throughput screen to identify key candidates whose downregulation can delay replicative senescence of primary human cells. This screen identified multiple new players including the histone acetyltransferase p300 that was found to be a primary driver of the senescent phenotype. p300, but not the paralogous CBP, induces a dynamic hyper-acetylated chromatin state and promotes the formation of active enhancer elements in the non-coding genome, leading to a senescence-specific gene expression program. Our work illustrates a causal role of histone acetyltransferases and acetylation in senescence and suggests p300 as a potential therapeutic target for senescence and age-related diseases.


Asunto(s)
Proliferación Celular , Senescencia Celular , Ensamble y Desensamble de Cromatina , Cromatina/enzimología , Fibroblastos/enzimología , Histonas/metabolismo , Procesamiento Proteico-Postraduccional , Factores de Transcripción p300-CBP/metabolismo , Acetilación , Proliferación Celular/genética , Senescencia Celular/genética , Cromatina/genética , Ensamble y Desensamble de Cromatina/genética , Represión Epigenética , Células HEK293 , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Histonas/genética , Humanos , Interferencia de ARN , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Transducción de Señal , Factores de Tiempo , Transcripción Genética , Factores de Transcripción p300-CBP/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA