Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 127
Filtrar
Más filtros

Base de datos
Tipo del documento
Intervalo de año de publicación
1.
EBioMedicine ; 108: 105364, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39353279

RESUMEN

BACKGROUND: PfSPZ Vaccine, a promising pre-erythrocytic stage malaria vaccine candidate based on whole, radiation-attenuated Plasmodium falciparum (Pf) sporozoites (SPZ), has proven safe and effective in mediating sterile protection from malaria in malaria-naïve and exposed healthy adults. Vaccine-induced protection presumably depends on cellular responses to early parasite liver stages, but humoral immunity contributes. METHODS: On custom-made Pf protein microarrays, we profiled IgG and IgM responses to PfSPZ Vaccine and subsequent homologous controlled human malaria infection (CHMI) in 21 Tanzanian adults with (n = 12) or without (n = 9) HIV infection. Expression of the main identified immunogens in the pre-erythrocytic parasite stage was verified by immunofluorescence detection using freshly purified PfSPZ and an in vitro model of primary human hepatocytes. FINDINGS: Independent of HIV infection status, immunisation induced focused IgG and IgM responses to circumsporozoite surface protein (PfCSP) and merozoite surface protein 5 (PfMSP5). We show that PfMSP5 is detectable on the surface and in the apical complex of PfSPZ. INTERPRETATION: Our data demonstrate that HIV infection does not affect the quantity of the total IgG and IgM antibody responses to PfCSP and PfMSP5 after immunization with PfSPZ Vaccine. PfMSP5 represents a highly immunogenic, so far underexplored, target for vaccine-induced antibodies in malaria pre-exposed volunteers. FUNDING: This work was supported by the Equatorial Guinea Malaria Vaccine Initiative (EGMVI), the Clinical Trial Platform of the German Center for Infection Research (TTU 03.702), the Swiss Government Excellence Scholarships for Foreign Scholars and Artists (grant 2016.0056) and the Interdisciplinary Center for Clinical Research doctoral program of the Tübingen University Hospital. The funders had no role in design, analysis, or reporting of this study.


Asunto(s)
Anticuerpos Antiprotozoarios , Inmunidad Humoral , Inmunoglobulina G , Vacunas contra la Malaria , Malaria Falciparum , Plasmodium falciparum , Humanos , Vacunas contra la Malaria/inmunología , Vacunas contra la Malaria/administración & dosificación , Plasmodium falciparum/inmunología , Tanzanía/epidemiología , Adulto , Malaria Falciparum/inmunología , Malaria Falciparum/prevención & control , Malaria Falciparum/parasitología , Masculino , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología , Anticuerpos Antiprotozoarios/inmunología , Femenino , Inmunoglobulina M/inmunología , Infecciones por VIH/inmunología , Esporozoítos/inmunología , Proteínas Protozoarias/inmunología , Antígenos de Protozoos/inmunología , Persona de Mediana Edad
2.
PLoS Negl Trop Dis ; 18(8): e0012412, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39133750

RESUMEN

BACKGROUND: Parasitic infectious agents rarely occur in isolation. Epidemiological evidence is mostly lacking, and little is known on how the two common parasites Plasmodium and soil transmitted helminths (STH) interact. There are contradictory findings in different studies. Synergism, antagonism and neutral effect have been documented between Plasmodium and STH. This study investigated the impact of STH on clinical malaria presentation and treatment outcome. METHODS: A matched case control study with a semi longitudinal follow up according to World Health Organization (WHO) antimalarial surveillance guideline was done among children aged 2 months to 9 years inclusively living in western rural areas of Bagamoyo, coastal region of Tanzania. Cases were children with uncomplicated and severe malaria enrolled from the health facilities while controls were children with asymptomatic Plasmodium parasitemia enrolled from the same community. RESULTS: In simple conditional regression analysis there was a tendency for a protective effect of STH on the development of clinical malaria [OR = 0.6, 95% CI of 0.3-1.3] which was more marked for Enterobius vermicularis species [OR = 0.2, 95% CI of 0.0-0.9]. On the contrary, hookworm species tended to be associated with increased risk of clinical malaria [OR = 3.0, 95% CI of 0.9-9.5]. In multiple conditional regression analysis, the overall protective effect was lower for all helminth infection [OR = 0.8, 95% CI of 0.3-1.9] but remained significantly protective for E. vermicularis species [OR = 0.1, 95% CI of 0.0-1.0] and borderline significant for hookworm species [OR = 3.6, 95% CI of 0.9-14.3]. Using ordinal logistic regression which better reflects the progression of asymptomatic Plasmodium parasitemia to severe malaria, there was a 50% significant protective effect with overall helminths [OR = 0.5, 95% CI of 0.3-0.9]. On the contrary, hookworm species was highly predictive of uncomplicated and severe malaria [OR = 7.8, 95% (CI of 1.8-33.9) and 49.7 (95% CI of 1.9-1298.9) respectively]. Generally, children infected with STH had higher geometric mean time to first clearance of parasitemia. CONCLUSION: The findings of a protective effect of E. vermicularis and an enhancing effect of hookworms may explain the contradictory results found in the literature about impact of helminths on clinical malaria. More insight should be gained on possible mechanisms for these opposite effects. These results should not deter at this stage deworming programs but rather foster implementation of integrated control program for these two common parasites.


Asunto(s)
Helmintiasis , Malaria , Suelo , Humanos , Tanzanía/epidemiología , Preescolar , Estudios de Casos y Controles , Masculino , Helmintiasis/tratamiento farmacológico , Helmintiasis/epidemiología , Helmintiasis/parasitología , Femenino , Malaria/tratamiento farmacológico , Malaria/epidemiología , Lactante , Resultado del Tratamiento , Niño , Suelo/parasitología , Animales , Helmintos/aislamiento & purificación , Helmintos/fisiología , Helmintos/efectos de los fármacos , Helmintos/clasificación , Antimaláricos/uso terapéutico , Coinfección/parasitología , Coinfección/tratamiento farmacológico , Coinfección/epidemiología
4.
Nat Commun ; 15(1): 5339, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38914562

RESUMEN

Broadly neutralizing antibodies (bNAbs) are promising candidates for the treatment and prevention of HIV-1 infections. Despite their critical importance, automatic detection of HIV-1 bNAbs from immune repertoires is still lacking. Here, we develop a straightforward computational method for the Rapid Automatic Identification of bNAbs (RAIN) based on machine learning methods. In contrast to other approaches, which use one-hot encoding amino acid sequences or structural alignment for prediction, RAIN uses a combination of selected sequence-based features for the accurate prediction of HIV-1 bNAbs. We demonstrate the performance of our approach on non-biased, experimentally obtained and sequenced BCR repertoires from HIV-1 immune donors. RAIN processing leads to the successful identification of distinct HIV-1 bNAbs targeting the CD4-binding site of the envelope glycoprotein. In addition, we validate the identified bNAbs using an in vitro neutralization assay and we solve the structure of one of them in complex with the soluble native-like heterotrimeric envelope glycoprotein by single-particle cryo-electron microscopy (cryo-EM). Overall, we propose a method to facilitate and accelerate HIV-1 bNAbs discovery from non-selected immune repertoires.


Asunto(s)
Anticuerpos Neutralizantes , Microscopía por Crioelectrón , Anticuerpos Anti-VIH , Infecciones por VIH , VIH-1 , Aprendizaje Automático , VIH-1/inmunología , Humanos , Anticuerpos Anti-VIH/inmunología , Anticuerpos Neutralizantes/inmunología , Infecciones por VIH/virología , Infecciones por VIH/inmunología , Antígenos CD4/metabolismo , Antígenos CD4/inmunología , Secuencia de Aminoácidos , Proteína gp120 de Envoltorio del VIH/inmunología , Proteína gp120 de Envoltorio del VIH/química
6.
Trends Parasitol ; 40(5): 362-366, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38582683

RESUMEN

The Equatorial Guinea Malaria Vaccine Initiative (EGMVI) highlights how long-term African government and international energy industry investment, plus novel partnerships, can enable clinical development of vaccines in Africa, for Africa. We review achievements and challenges of this pioneering, award-winning, public-private partnership which offers a model for future Africa-centric clinical research and development (R&D).


Asunto(s)
Vacunas contra la Malaria , Desarrollo de Vacunas , Guinea Ecuatorial , Vacunas contra la Malaria/inmunología , Humanos , Malaria/prevención & control , Asociación entre el Sector Público-Privado , África
7.
J Antimicrob Chemother ; 79(5): 987-996, 2024 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-38502783

RESUMEN

BACKGROUND: The emergence of drug-resistant clones of Plasmodium falciparum is a major public health concern, and the ability to detect and track the spread of these clones is crucial for effective malaria control and treatment. However, in endemic settings, malaria infected people often carry multiple P. falciparum clones simultaneously making it likely to miss drug-resistant clones using traditional molecular typing methods. OBJECTIVES: Our goal was to develop a bioinformatics pipeline for compositional profiling in multiclonal P. falciparum samples, sequenced using the Oxford Nanopore Technologies MinION platform. METHODS: We developed the 'Finding P. falciparum haplotypes with resistance mutations in polyclonal infections' (PHARE) pipeline using existing bioinformatics tools and custom scripts written in python. PHARE was validated on three control datasets containing P. falciparum DNA of four laboratory strains at varying mixing ratios. Additionally, the pipeline was tested on clinical samples from children admitted to a paediatric hospital in the Central African Republic. RESULTS: The PHARE pipeline achieved high recall and accuracy rates in all control datasets. The pipeline can be used on any gene and was tested with amplicons of the P. falciparum drug resistance marker genes pfdhps, pfdhfr and pfK13. CONCLUSIONS: The PHARE pipeline helps to provide a more complete picture of drug resistance in the circulating P. falciparum population and can help to guide treatment recommendations. PHARE is freely available under the GNU Lesser General Public License v.3.0 on GitHub: https://github.com/Fippu/PHARE.


Asunto(s)
Biología Computacional , Resistencia a Medicamentos , Malaria Falciparum , Secuenciación de Nanoporos , Plasmodium falciparum , Plasmodium falciparum/genética , Plasmodium falciparum/efectos de los fármacos , Humanos , Biología Computacional/métodos , Secuenciación de Nanoporos/métodos , Malaria Falciparum/parasitología , Resistencia a Medicamentos/genética , Antimaláricos/farmacología , Mutación
8.
Comput Biol Med ; 171: 108185, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38401454

RESUMEN

BACKGROUND: Streptococcus agalactiae, commonly known as Group B Streptococcus (GBS), exhibits a broad host range, manifesting as both a beneficial commensal and an opportunistic pathogen across various species. In humans, it poses significant risks, causing neonatal sepsis and meningitis, along with severe infections in adults. Additionally, it impacts livestock by inducing mastitis in bovines and contributing to epidemic mortality in fish populations. Despite its wide host spectrum, the mechanisms enabling GBS to adapt to specific hosts remain inadequately elucidated. Therefore, the development of a rapid and accurate method differentiates GBS strains associated with particular animal hosts based on genome-wide information holds immense potential. Such a tool would not only bolster the identification and containment efforts during GBS outbreaks but also deepen our comprehension of the bacteria's host adaptations spanning humans, livestock, and other natural animal reservoirs. METHODS AND RESULTS: Here, we developed three machine learning models-random forest (RF), logistic regression (LR), and support vector machine (SVM) based on genome-wide mutation data. These models enabled precise prediction of the host origin of GBS, accurately distinguishing between human, bovine, fish, and pig hosts. Moreover, we conducted an interpretable machine learning using SHapley Additive exPlanations (SHAP) and variant annotation to uncover the most influential genomic features and associated genes for each host. Additionally, by meticulously examining misclassified samples, we gained valuable insights into the dynamics of host transmission and the potential for zoonotic infections. CONCLUSIONS: Our study underscores the effectiveness of random forest (RF) and logistic regression (LR) models based on mutation data for accurately predicting GBS host origins. Additionally, we identify the key features associated with each GBS host, thereby enhancing our understanding of the bacteria's host-specific adaptations.


Asunto(s)
Infecciones Estreptocócicas , Streptococcus agalactiae , Femenino , Adulto , Animales , Humanos , Bovinos , Porcinos , Streptococcus agalactiae/genética , Infecciones Estreptocócicas/veterinaria , Genómica , Peces , Aprendizaje Automático
9.
J Clin Invest ; 134(6)2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38194272

RESUMEN

BACKGROUNDSanaria PfSPZ Vaccine, composed of attenuated Plasmodium falciparum (Pf) sporozoites (SPZ), protects against malaria. We conducted this clinical trial to assess the safety and efficacy of PfSPZ Vaccine in HIV-positive (HIV+) individuals, since the HIV-infection status of participants in mass vaccination programs may be unknown.METHODSThis randomized, double-blind, placebo-controlled trial enrolled 18- to 45-year-old HIV-negative (HIV-) and well-controlled HIV+ Tanzanians (HIV viral load <40 copies/mL, CD4 counts >500 cells/µL). Participants received 5 doses of PfSPZ Vaccine or normal saline (NS) over 28 days, followed by controlled human malaria infection (CHMI) 3 weeks later.RESULTSThere were no solicited adverse events in the 9 HIV- and 12 HIV+ participants. After CHMI, 6 of 6 NS controls, 1 of 5 HIV- vaccinees, and 4 of 4 HIV+ vaccinees were Pf positive by quantitative PCR (qPCR). After immunization, anti-Pf circumsporozoite protein (anti-PfCSP) (isotype and IgG subclass) and anti-PfSPZ antibodies, anti-PfSPZ CD4+ T cell responses, and Vδ2+ γδ CD3+ T cells were nonsignificantly higher in HIV- than in HIV+ vaccinees. Sera from HIV- vaccinees had significantly higher inhibition of PfSPZ invasion of hepatocytes in vitro and antibody-dependent complement deposition (ADCD) and Fcγ3B binding by anti-PfCSP and ADCD by anti-cell-traversal protein for ookinetes and SPZ (anti-PfCelTOS) antibodies.CONCLUSIONSPfSPZ Vaccine was safe and well tolerated in HIV+ vaccinees, but not protective. Vaccine efficacy was 80% in HIV- vaccinees (P = 0.012), whose sera had significantly higher inhibition of PfSPZ invasion of hepatocytes and enrichment of multifunctional PfCSP antibodies. A more potent PfSPZ vaccine or regimen is needed to protect those living with HIV against Pf infection in Africa.TRIAL REGISTRATIONClinicalTrials.gov NCT03420053.FUNDINGEquatorial Guinea Malaria Vaccine Initiative (EGMVI), made up of the Government of Equatorial Guinea Ministries of Mines and Hydrocarbons, and Health and Social Welfare, Marathon Equatorial Guinea Production Limited, Noble Energy, Atlantic Methanol Production Company, and EG LNG; Swiss government, through ESKAS scholarship grant no. 2016.0056; Intramural Research Program of the National Institute of Allergy and Infectious Diseases, NIH; NIH grant 1U01AI155354-01.


Asunto(s)
Infecciones por VIH , Vacunas contra la Malaria , Malaria Falciparum , Adolescente , Adulto , Humanos , Persona de Mediana Edad , Adulto Joven , Anticuerpos Antiprotozoarios , Pueblo de África Oriental , Infecciones por VIH/complicaciones , Vacunas contra la Malaria/inmunología , Malaria Falciparum/prevención & control , Plasmodium falciparum , Tanzanía , Seronegatividad para VIH , Seropositividad para VIH , Eficacia de las Vacunas
10.
Expert Rev Vaccines ; 23(1): 160-173, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38100310

RESUMEN

INTRODUCTION: Malaria represents a public health challenge in tropical and subtropical regions, and currently deployed control strategies are likely insufficient to drive elimination of malaria. Development and improvement of malaria vaccines might be key to reduce disease burden. Vaccines targeting asexual blood stages of the parasite have shown limited efficacy when studied in human trials conducted over the past decades. AREAS COVERED: Vaccine candidates based on the merozoite surface protein 1 (MSP1) were initially envisioned as one of the most promising approaches to provide immune protection against asexual blood-stage malaria. Successful immunization studies in monkey involved the use of the full-length MSP1 (MSP1FL) as vaccine construct. Vaccines using MSP1FL for immunization have the potential benefit of including numerous conserved B-cell and T-cell epitopes. This could result in improved parasite strain-transcending, protective immunity in the field. We review outcomes of clinical trials that utilized a variety of MSP1 constructs and formulations, including MSP1FL, either alone or in combination with other antigens, in both animal models and humans. EXPERT OPINION: Novel approaches to analyze breadth and magnitude of effector functions of MSP1-targeting antibodies in volunteers undergoing experimental vaccination and controlled human malaria infection will help to define correlates of protective immunity.


Asunto(s)
Vacunas contra la Malaria , Malaria Falciparum , Malaria , Animales , Humanos , Proteína 1 de Superficie de Merozoito/metabolismo , Plasmodium falciparum , Antígenos de Protozoos , Malaria/prevención & control , Malaria Falciparum/prevención & control , Anticuerpos Antiprotozoarios , Proteínas Protozoarias
11.
Cell Host Microbe ; 31(10): 1714-1731.e9, 2023 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-37751747

RESUMEN

Although gut and lymph node (LN) memory CD4 T cells represent major HIV and simian immunodeficiency virus (SIV) tissue reservoirs, the study of the role of dendritic cells (DCs) in HIV persistence has long been limited to the blood due to difficulties to access lymphoid tissue samples. In this study, we show that LN migratory and resident DC subpopulations harbor distinct phenotypic and transcriptomic profiles. Interestingly, both LN DC subpopulations contain HIV intact provirus and inducible replication-competent HIV despite the expression of the antiviral restriction factor SAMHD1. Notably, LN DC subpopulations isolated from HIV-infected individuals treated for up to 14 years are transcriptionally silent but harbor replication-competent virus that can be induced upon TLR7/8 stimulation. Taken together, these results uncover a potential important contribution of LN DCs to HIV infection in the presence of ART.


Asunto(s)
Infecciones por VIH , Síndrome de Inmunodeficiencia Adquirida del Simio , Virus de la Inmunodeficiencia de los Simios , Animales , Humanos , Linfocitos T CD4-Positivos , Antirretrovirales/uso terapéutico , Ganglios Linfáticos , Células Dendríticas
12.
PLOS Glob Public Health ; 3(9): e0001516, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37756280

RESUMEN

Malaria surveillance is hampered by the widespread use of diagnostic tests with low sensitivity. Adequate molecular malaria diagnostics are often only available in centralized laboratories. PlasmoPod is a novel cartridge-based nucleic acid amplification test for rapid, sensitive, and quantitative detection of malaria parasites. PlasmoPod is based on reverse-transcription quantitative polymerase chain reaction (RT-qPCR) of the highly abundant Plasmodium spp. 18S ribosomal RNA/DNA biomarker and is run on a portable qPCR instrument which allows diagnosis in less than 30 minutes. Our analytical performance evaluation indicates that a limit-of-detection as low as 0.02 parasites/µL can be achieved and no cross-reactivity with other pathogens common in malaria endemic regions was observed. In a cohort of 102 asymptomatic individuals from Bioko Island with low malaria parasite densities, PlasmoPod accurately detected 83 cases, resulting in an overall detection rate of 81.4%. Notably, there was a strong correlation between the Cq values obtained from the reference RT-qPCR assay and those obtained from PlasmoPod. In an independent cohort, using dried blood spots from malaria symptomatic children living in the Central African Republic, we demonstrated that PlasmoPod outperforms malaria rapid diagnostic tests based on the PfHRP2 and panLDH antigens as well as thick blood smear microscopy. Our data suggest that this 30-minute sample-to-result RT-qPCR procedure is likely to achieve a diagnostic performance comparable to a standard laboratory-based RT-qPCR setup. We believe that the PlasmoPod rapid NAAT could enable widespread accessibility of high-quality and cost-effective molecular malaria surveillance data through decentralization of testing and surveillance activities, especially in elimination settings.

13.
Appl Environ Microbiol ; 89(9): e0065823, 2023 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-37655921

RESUMEN

Antimicrobial resistance (AMR) is a critical global concern driven by the overuse, misuse, and/or usage of inadequate antibiotics on humans, animals' agriculture, and as a result of contaminated environments. This study is the first One Health survey in the Middle East that incorporated whole-genome sequencing (WGS) to examine the spread of AMR in Campylobacter spp. and Salmonella spp. This cross-sectional study was conducted to examine the role of AMR at the human-animal-environmental interface and was performed in Ramallah/Al-Bireh and Jerusalem governorates of the central West Bank, Palestine. In 2021 and 2022, a total of 592 samples were collected and analyzed. From a total of 65 Campylobacter jejuni and 19 Salmonella spp. isolates, DNA was extracted for WGS using Oxford Nanopore Technologies MinION platform. We found that the dominant serotypes of C. jejuni and Salmonella enterica were present in chicken manure, chicken meat sold in markets, and feces of asymptomatic farm workers, with high genetic similarities between the isolates regardless of origin. Additionally, our results showed rapid strain turnover in C. jejuni from the same sites between 2021 and 2022. Most of the positive Salmonella spp. samples were multidrug-resistant (MDR) S. enterica serovar Muenchen carrying the plasmid of emerging S. infantis (pESI) megaplasmid, conferring resistance to multiple antibiotics. Our findings highlight the spread of MDR foodborne pathogens from animals to humans through the food chain, emphasizing the importance of a One Health approach that considers the interconnections between human, animal, and environmental health. IMPORTANCE Prior to this study, there existed hardly an integrated human-animal-environmental study of Salmonellosis and Campylobacteriosis and related AMR in Middle Eastern countries. The few existing studies lack robust epidemiological study designs, adequate for a One Health approach, and did not use WGS to determine the circulating serotypes and their AMR profiles. Civil unrest and war in Middle Eastern countries drive AMR because of the breakdown of public health and food security services. This study samples simultaneously humans, animals, and the environment to comprehensively investigate foodborne pathogens in the broiler chicken production chain in Palestine using WGS. We show that identical serotypes of C. jejuni and S. enterica can be found in samples from chicken farms, chicken meat sold in markets, and asymptomatic broiler chicken production workers. The most striking feature is the rapid dynamic of change in the genetic profile of the detected species in the same sampling locations. The majority of positive Salmonella spp. samples are MDR S. enterica serovar Muenchen isolates carrying the pESI megaplasmid. The results demonstrate a close relationship between the S. enterica serovar Muenchen isolates found in our sample collection and those responsible for 40% of all clinical Salmonella spp. isolates in Israel as previously reported, with a sequence identity of over 99.9%. These findings suggest the transboundary spread of MDR S. enterica serovar Muenchen strains from animals to humans through the food chain. The study underscores the importance of combining integrated One Health studies with WGS for detecting environmental-animal-human transmission of foodborne pathogens that could not be detected otherwise. This study showcases the benefits of integrated environmental-animal-human sampling and WGS for monitoring AMR. Environmental samples, which may be more accessible in conflict-torn places where monitoring systems are limited and regulations are weak, can provide an effective AMR surveillance solution. WGS of bacterial isolates provides causal inference of the distribution and spread of bacterial serotypes and AMR in complex social-ecological systems. Consequently, our results point toward the expected benefits of operationalizing a One Health approach through closer cooperation of public and animal health and food safety authorities.


Asunto(s)
Campylobacter , Salud Única , Salmonella enterica , Animales , Humanos , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Estudios Transversales , Farmacorresistencia Bacteriana , Pollos/microbiología , Salmonella , Salmonella enterica/genética , Campylobacter/genética , Pruebas de Sensibilidad Microbiana , Farmacorresistencia Bacteriana Múltiple/genética
14.
Expert Rev Vaccines ; 22(1): 964-1007, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37571809

RESUMEN

INTRODUCTION: Malaria, a devastating febrile illness caused by protozoan parasites, sickened 247,000,000 people in 2021 and killed 619,000, mostly children and pregnant women in sub-Saharan Africa. A highly effective vaccine is urgently needed, especially for Plasmodium falciparum (Pf), the deadliest human malaria parasite. AREAS COVERED: Sporozoites (SPZ), the parasite stage transmitted by Anopheles mosquitoes to humans, are the only vaccine immunogen achieving >90% efficacy against Pf infection. This review describes >30 clinical trials of PfSPZ vaccines in the U.S.A., Europe, Africa, and Asia, based on first-hand knowledge of the trials and PubMed searches of 'sporozoites,' 'malaria,' and 'vaccines.' EXPERT OPINION: First generation (radiation-attenuated) PfSPZ vaccines are safe, well tolerated, 80-100% efficacious against homologous controlled human malaria infection (CHMI) and provide 18-19 months protection without boosting in Africa. Second generation chemo-attenuated PfSPZ are more potent, 100% efficacious against stringent heterologous (variant strain) CHMI, but require a co-administered drug, raising safety concerns. Third generation, late liver stage-arresting, replication competent (LARC), genetically-attenuated PfSPZ are expected to be both safe and highly efficacious. Overall, PfSPZ vaccines meet safety, tolerability, and efficacy requirements for protecting pregnant women and travelers exposed to Pf in Africa, with licensure for these populations possible within 5 years. Protecting children and mass vaccination programs to block transmission and eliminate malaria are long-term objectives.


Asunto(s)
Vacunas contra la Malaria , Malaria Falciparum , Malaria , Embarazo , Niño , Animales , Humanos , Femenino , Esporozoítos , Ciencia Traslacional Biomédica , Vacunas Atenuadas , Malaria/prevención & control , Malaria Falciparum/prevención & control , Plasmodium falciparum , Inmunización
15.
Am J Trop Med Hyg ; 109(1): 138-146, 2023 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-37160281

RESUMEN

The radiation-attenuated Plasmodium falciparum sporozoites (PfSPZ) Vaccine has demonstrated safety and immunogenicity in 5-month-old to 50-year-old Africans in multiple trials. Except for one, each trial has restricted enrollment to either infants and children or adults < 50 years old. This trial was conducted in Equatorial Guinea and assessed the safety, tolerability, and immunogenicity of three direct venous inoculations of 1.8 × 106 or 2.7 × 106 PfSPZ, of PfSPZ Vaccine, or normal saline administered at 8-week intervals in a randomized, double-blind, placebo-controlled trial stratified by age (6-11 months and 1-5, 6-10, 11-17, 18-35, and 36-61 years). All doses were successfully administered. In all, 192/207 injections (93%) in those aged 6-61 years were rated as causing no or mild pain. There were no significant differences in solicited adverse events (AEs) between vaccinees and controls in any age group (P ≥ 0.17). There were no significant differences between vaccinees and controls with respect to the rates or severity of unsolicited AEs or laboratory abnormalities. Development of antibodies to P. falciparum circumsporozoite protein occurred in 67/69 vaccinees (97%) and 0/15 controls. Median antibody levels were highest in infants and 1-5-year-olds and declined progressively with age. Antibody responses in children were greater than in adults protected against controlled human malaria infection. Robust immunogenicity, combined with a benign AE profile, indicates children are an ideal target for immunization with PfSPZ Vaccine.


Asunto(s)
Vacunas contra la Malaria , Malaria Falciparum , Animales , Adulto , Humanos , Niño , Lactante , Preescolar , Persona de Mediana Edad , Plasmodium falciparum , Malaria Falciparum/prevención & control , Esporozoítos , Vacunas Atenuadas , Guinea Ecuatorial , Método Doble Ciego , Inmunogenicidad Vacunal
16.
Trends Mol Med ; 29(1): 1-3, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36404198

RESUMEN

Induction of sterile immunity against sporozoite and liver stages of malaria is a long-standing aim in vaccine development. Genetically engineered, attenuated sporozoites were systematically evaluated in animal models. Murphy et al. present the first, promising clinical trial of early arresting parasites, PfGAP3KO, confirming safety and demonstrating efficacy against homologous challenge.


Asunto(s)
Vacunas contra la Malaria , Malaria , Animales , Humanos , Vacunas contra la Malaria/uso terapéutico , Esporozoítos , Hígado
17.
Malar J ; 21(1): 357, 2022 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-36447234

RESUMEN

BACKGROUND: The ability of malaria rapid diagnostic tests (RDTs) to effectively detect active infections is being compromised by the presence of malaria strains with genomic deletions at the hrp2 and hrp3 loci, encoding the antigens most commonly targeted in diagnostics for Plasmodium falciparum detection. The presence of such deletions can be determined in publically available P. falciparum whole genome sequencing (WGS) datasets. A computational approach was developed and validated, termed Gene Coverage Count and Classification (GC3), to analyse genome-wide sequence coverage data and provide informative outputs to assess presence and coverage profile of a target locus in WGS data. GC3 was applied to detect deletions at hrp2 and hrp3 (hrp2/3) and flanking genes in different geographic regions and across time points. METHODS: GC3 uses Python and R scripts to extract locus read coverage metrics from mapped WGS data according to user-defined parameters and generates relevant tables and figures. GC3 was tested using WGS data for laboratory reference strains with known hrp2/3 genotypes, and its results compared to those of a hrp2/3-specific qPCR assay. Samples with at least 25% of coding region positions with zero coverage were classified as having a deletion. Publicly available sequence data was analysed and compared with published deletion frequency estimates. RESULTS: GC3 results matched the expected coverage of known laboratory reference strains. Agreement between GC3 and a hrp2/3-specific qPCR assay reported for 19/19 (100%) hrp2 deletions and 18/19 (94.7%) hrp3 deletions. Among Cambodian (n = 127) and Brazilian (n = 20) WGS datasets, which had not been previously analysed for hrp2/3 deletions, GC3 identified hrp2 deletions in three and four samples, and hrp3 deletions in 10 and 15 samples, respectively. Plots of hrp2/3 coding regions, grouped by year of sample collection, showed a decrease in median standardized coverage among Malawian samples (n = 150) suggesting the importance of a careful, properly controlled follow up to determine if an increase in frequency of deletions has occurred between 2007-2008 and 2014-2015. Among Malian (n = 90) samples, median standardized coverage was lower in 2002 than 2010, indicating widespread deletions present at the gene locus in 2002. CONCLUSIONS: The GC3 tool accurately classified hrp2/3 deletions and provided informative tables and figures to analyse targeted gene coverage. GC3 is an appropriate tool when performing preliminary and exploratory assessment of locus coverage data.


Asunto(s)
Histidina , Comportamiento del Uso de la Herramienta , Plasmodium falciparum/genética , Secuenciación Completa del Genoma , Genotipo
19.
Proc Natl Acad Sci U S A ; 119(36): e2205470119, 2022 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-36037353

RESUMEN

Recombination of antibody genes in B cells can involve distant genomic loci and contribute a foreign antigen-binding element to form hybrid antibodies with broad reactivity for Plasmodium falciparum. So far, antibodies containing the extracellular domain of the LAIR1 and LILRB1 receptors represent unique examples of cross-chromosomal antibody diversification. Here, we devise a technique to profile non-VDJ elements from distant genes in antibody transcripts. Independent of the preexposure of donors to malaria parasites, non-VDJ inserts were detected in 80% of individuals at frequencies of 1 in 104 to 105 B cells. We detected insertions in heavy, but not in light chain or T cell receptor transcripts. We classify the insertions into four types depending on the insert origin and destination: 1) mitochondrial and 2) nuclear DNA inserts integrated at VDJ junctions; 3) inserts originating from telomere proximal genes; and 4) fragile sites incorporated between J-to-constant junctions. The latter class of inserts was exclusively found in memory and in in vitro activated B cells, while all other classes were already detected in naïve B cells. More than 10% of inserts preserved the reading frame, including transcripts with signs of antigen-driven affinity maturation. Collectively, our study unravels a mechanism of antibody diversification that is layered on the classical V(D)J and switch recombination.


Asunto(s)
Diversidad de Anticuerpos , Linfocitos B , Genes de Inmunoglobulinas , Anticuerpos Antiprotozoarios/genética , Antígenos CD/inmunología , Linfocitos B/inmunología , Genómica , Humanos , Cadenas Ligeras de Inmunoglobulina/genética , Receptor Leucocitario Tipo Inmunoglobulina B1/inmunología , Mutagénesis Insercional , Plasmodium falciparum , Receptores de Antígenos de Linfocitos T/genética , Receptores Inmunológicos/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA