Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
RNA Biol ; 21(1): 1-15, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38758523

RESUMEN

2´-O-methylation (Nm) is one of the most abundant modifications found in both mRNAs and noncoding RNAs. It contributes to many biological processes, such as the normal functioning of tRNA, the protection of mRNA against degradation by the decapping and exoribonuclease (DXO) protein, and the biogenesis and specificity of rRNA. Recent advancements in single-molecule sequencing techniques for long read RNA sequencing data offered by Oxford Nanopore technologies have enabled the direct detection of RNA modifications from sequencing data. In this study, we propose a bio-computational framework, Nm-Nano, for predicting the presence of Nm sites in direct RNA sequencing data generated from two human cell lines. The Nm-Nano framework integrates two supervised machine learning (ML) models for predicting Nm sites: Extreme Gradient Boosting (XGBoost) and Random Forest (RF) with K-mer embedding. Evaluation on benchmark datasets from direct RNA sequecing of HeLa and HEK293 cell lines, demonstrates high accuracy (99% with XGBoost and 92% with RF) in identifying Nm sites. Deploying Nm-Nano on HeLa and HEK293 cell lines reveals genes that are frequently modified with Nm. In HeLa cell lines, 125 genes are identified as frequently Nm-modified, showing enrichment in 30 ontologies related to immune response and cellular processes. In HEK293 cell lines, 61 genes are identified as frequently Nm-modified, with enrichment in processes like glycolysis and protein localization. These findings underscore the diverse regulatory roles of Nm modifications in metabolic pathways, protein degradation, and cellular processes. The source code of Nm-Nano can be freely accessed at https://github.com/Janga-Lab/Nm-Nano.


Asunto(s)
Aprendizaje Automático , Análisis de Secuencia de ARN , Transcriptoma , Humanos , Metilación , Análisis de Secuencia de ARN/métodos , Células HeLa , Secuenciación de Nanoporos/métodos , Células HEK293 , Biología Computacional/métodos , Procesamiento Postranscripcional del ARN , Nanoporos , Programas Informáticos , ARN Mensajero/genética , ARN Mensajero/metabolismo
2.
Elife ; 132024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38240312

RESUMEN

Out of the several hundred copies of rRNA genes arranged in the nucleolar organizing regions (NOR) of the five human acrocentric chromosomes, ~50% remain transcriptionally inactive. NOR-associated sequences and epigenetic modifications contribute to the differential expression of rRNAs. However, the mechanism(s) controlling the dosage of active versus inactive rRNA genes within each NOR in mammals is yet to be determined. We have discovered a family of ncRNAs, SNULs (Single NUcleolus Localized RNA), which form constrained sub-nucleolar territories on individual NORs and influence rRNA expression. Individual members of the SNULs monoallelically associate with specific NOR-containing chromosomes. SNULs share sequence similarity to pre-rRNA and localize in the sub-nucleolar compartment with pre-rRNA. Finally, SNULs control rRNA expression by influencing pre-rRNA sorting to the DFC compartment and pre-rRNA processing. Our study discovered a novel class of ncRNAs influencing rRNA expression by forming constrained nucleolar territories on individual NORs.


Asunto(s)
Región Organizadora del Nucléolo , Precursores del ARN , Humanos , Animales , Región Organizadora del Nucléolo/genética , Región Organizadora del Nucléolo/metabolismo , Precursores del ARN/genética , Precursores del ARN/metabolismo , Nucléolo Celular/genética , Nucléolo Celular/metabolismo , ARN Ribosómico/genética , ARN Ribosómico/metabolismo , Cromosomas Humanos/metabolismo , ARN no Traducido/genética , ARN no Traducido/metabolismo , Mamíferos/genética
3.
Methods Mol Biol ; 2624: 127-138, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36723813

RESUMEN

Oxford Nanopore-based long-read direct RNA sequencing protocols are being increasingly used to study the dynamics of RNA metabolic processes due to improvements in read lengths, increased throughput, decreasing cost, ease of library preparation, and convenience. Long-read sequencing enables single-molecule-based detection of posttranscriptional changes, promising novel insights into the functional roles of RNA. However, fulfilling this potential will necessitate the development of new tools for analyzing and exploring this type of data. Although there are tools that allow users to analyze signal information, such as comparing raw signal traces to a nucleotide sequence, they don't facilitate studying each individual signal instance in each read or perform analysis of signal clusters based on signal similarity. Therefore, we present Sequoia, a visual analytics application that allows users to interactively analyze signals originating from nanopore sequencers and can readily be extended to both RNA and DNA sequencing datasets. Sequoia combines a Python-based backend with a multi-view graphical interface that allows users to ingest raw nanopore sequencing data in Fast5 format, cluster sequences based on electric-current similarities, and drill-down onto signals to find attributes of interest. In this tutorial, we illustrate each individual step involved in running Sequoia and in the process dissect input data characteristics. We show how to generate Nanopore sequencing-based visualizations by leveraging dimensionality reduction and parameter tuning to separate modified RNA sequences from their unmodified counterparts. Sequoia's interactive features enhance nanopore-based computational methodologies. Sequoia enables users to construct rationales and hypotheses and develop insights about the dynamic nature of RNA from the visual analysis. Sequoia is available at https://github.com/dnonatar/Sequoia .


Asunto(s)
Nanoporos , Sequoia , ARN/genética , Análisis de Secuencia de ADN/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Análisis de Secuencia de ARN , Programas Informáticos
4.
Methods ; 203: 478-487, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35182749

RESUMEN

Pseudouridine is one of the most abundant RNA modifications, occurring when uridines are catalyzed by Pseudouridine synthase proteins. It plays an important role in many biological processes and has been reported to have application in drug development. Recently, the single-molecule sequencing techniques such as the direct RNA sequencing platform offered by Oxford Nanopore technologies have enabled direct detection of RNA modifications on the molecule being sequenced. In this study, we introduce a tool called Penguin that integrates several machine learning (ML) models to identify RNA Pseudouridine sites on Nanopore direct RNA sequencing reads. Pseudouridine sites were identified on single molecule sequencing data collected from direct RNA sequencing resulting in 723 K reads in Hek293 and 500 K reads in Hela cell lines. Penguin extracts a set of features from the raw signal measured by the Oxford Nanopore and the corresponding basecalled k-mer. Those features are used to train the predictors included in Penguin, which in turn, can predict whether the signal is modified by the presence of Pseudouridine sites in the testing phase. We have included various predictors in Penguin, including Support vector machines (SVM), Random Forest (RF), and Neural network (NN). The results on the two benchmark data sets for Hek293 and Hela cell lines show outstanding performance of Penguin either in random split testing or in independent validation testing. In random split testing, Penguin has been able to identify Pseudouridine sites with a high accuracy of 93.38% by applying SVM to Hek293 benchmark dataset. In independent validation testing, Penguin achieves an accuracy of 92.61% by training SVM with Hek293 benchmark dataset and testing it for identifying Pseudouridine sites on Hela benchmark dataset. Thus, Penguin outperforms the existing Pseudouridine predictors in the literature by 16 % higher accuracy than those predictors using independent validation testing. Employing penguin to predict Pseudouridine sites revealed a significant enrichment of "regulation of mRNA 3'-end processing" in Hek293 cell line and 'positive regulation of transcription from RNA polymerase II promoter involved in cellular response to chemical stimulus' in Hela cell line. Penguin software and models are available on GitHub at https://github.com/Janga-Lab/Penguin and can be readily employed for predicting Ψ sites from Nanopore direct RNA-sequencing datasets.


Asunto(s)
Secuenciación de Nanoporos , Nanoporos , Spheniscidae , Animales , Células HEK293 , Células HeLa , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Seudouridina/química , ARN/genética , Análisis de Secuencia de ARN/métodos , Spheniscidae/genética , Spheniscidae/metabolismo
5.
BMC Genomics ; 22(1): 513, 2021 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-34233619

RESUMEN

BACKGROUND: Direct-sequencing technologies, such as Oxford Nanopore's, are delivering long RNA reads with great efficacy and convenience. These technologies afford an ability to detect post-transcriptional modifications at a single-molecule resolution, promising new insights into the functional roles of RNA. However, realizing this potential requires new tools to analyze and explore this type of data. RESULT: Here, we present Sequoia, a visual analytics tool that allows users to interactively explore nanopore sequences. Sequoia combines a Python-based backend with a multi-view visualization interface, enabling users to import raw nanopore sequencing data in a Fast5 format, cluster sequences based on electric-current similarities, and drill-down onto signals to identify properties of interest. We demonstrate the application of Sequoia by generating and analyzing ~ 500k reads from direct RNA sequencing data of human HeLa cell line. We focus on comparing signal features from m6A and m5C RNA modifications as the first step towards building automated classifiers. We show how, through iterative visual exploration and tuning of dimensionality reduction parameters, we can separate modified RNA sequences from their unmodified counterparts. We also document new, qualitative signal signatures that characterize these modifications from otherwise normal RNA bases, which we were able to discover from the visualization. CONCLUSIONS: Sequoia's interactive features complement existing computational approaches in nanopore-based RNA workflows. The insights gleaned through visual analysis should help users in developing rationales, hypotheses, and insights into the dynamic nature of RNA. Sequoia is available at https://github.com/dnonatar/Sequoia .


Asunto(s)
Secuenciación de Nanoporos , Nanoporos , Sequoia , Células HeLa , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Análisis de Secuencia de ADN , Programas Informáticos
6.
BMC Bioinformatics ; 22(1): 279, 2021 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-34039271

RESUMEN

BACKGROUND: With advancements in omics technologies, the range of biological processes where long non-coding RNAs (lncRNAs) are involved, is expanding extensively, thereby generating the need to develop lncRNA annotation resources. Although, there are a plethora of resources for annotating genes, despite the extensive corpus of lncRNA literature, the available resources with lncRNA ontology annotations are rare. RESULTS: We present a lncRNA annotation extractor and repository (Lantern), developed using PubMed's abstract retrieval engine and NCBO's recommender annotation system. Lantern's annotations were benchmarked against lncRNAdb's manually curated free text. Benchmarking analysis suggested that Lantern has a recall of 0.62 against lncRNAdb for 182 lncRNAs and precision of 0.8. Additionally, we also annotated lncRNAs with multiple omics annotations, including predicted cis-regulatory TFs, interactions with RBPs, tissue-specific expression profiles, protein co-expression networks, coding potential, sub-cellular localization, and SNPs for ~ 11,000 lncRNAs in the human genome, providing a one-stop dynamic visualization platform. CONCLUSIONS: Lantern integrates a novel, accurate semi-automatic ontology annotation engine derived annotations combined with a variety of multi-omics annotations for lncRNAs, to provide a central web resource for dissecting the functional dynamics of long non-coding RNAs and to facilitate future hypothesis-driven experiments. The annotation pipeline and a web resource with current annotations for human lncRNAs are freely available on sysbio.lab.iupui.edu/lantern.


Asunto(s)
ARN Largo no Codificante , Genoma Humano , Humanos , Anotación de Secuencia Molecular , ARN Largo no Codificante/genética
7.
Genes Brain Behav ; 20(2): e12698, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32893479

RESUMEN

LncRNAs are important regulators of quantitative and qualitative features of the transcriptome. We have used QTL and other statistical analyses to identify a gene coexpression module associated with alcohol consumption. The "hub gene" of this module, Lrap (Long non-coding RNA for alcohol preference), was an unannotated transcript resembling a lncRNA. We used partial correlation analyses to establish that Lrap is a major contributor to the integrity of the coexpression module. Using CRISPR/Cas9 technology, we disrupted an exon of Lrap in Wistar rats. Measures of alcohol consumption in wild type, heterozygous and knockout rats showed that disruption of Lrap produced increases in alcohol consumption/alcohol preference. The disruption of Lrap also produced changes in expression of over 700 other transcripts. Furthermore, it became apparent that Lrap may have a function in alternative splicing of the affected transcripts. The GO category of "Response to Ethanol" emerged as one of the top candidates in an enrichment analysis of the differentially expressed transcripts. We validate the role of Lrap as a mediator of alcohol consumption by rats, and also implicate Lrap as a modifier of the expression and splicing of a large number of brain transcripts. A defined subset of these transcripts significantly impacts alcohol consumption by rats (and possibly humans). Our work shows the pleiotropic nature of non-coding elements of the genome, the power of network analysis in identifying the critical elements influencing phenotypes, and the fact that not all changes produced by genetic editing are critical for the concomitant changes in phenotype.


Asunto(s)
Consumo de Bebidas Alcohólicas/genética , Encéfalo/metabolismo , ARN Largo no Codificante/genética , Consumo de Bebidas Alcohólicas/fisiopatología , Animales , Sitios de Carácter Cuantitativo , ARN Largo no Codificante/metabolismo , Ratas , Ratas Wistar , Transcriptoma
8.
Int J Mol Sci ; 21(19)2020 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-32993015

RESUMEN

The outbreak of a novel coronavirus SARS-CoV-2 responsible for the COVID-19 pandemic has caused a worldwide public health emergency. Due to the constantly evolving nature of the coronaviruses, SARS-CoV-2-mediated alterations on post-transcriptional gene regulations across human tissues remain elusive. In this study, we analyzed publicly available genomic datasets to systematically dissect the crosstalk and dysregulation of the human post-transcriptional regulatory networks governed by RNA-binding proteins (RBPs) and micro-RNAs (miRs) due to SARS-CoV-2 infection. We uncovered that 13 out of 29 SARS-CoV-2-encoded proteins directly interacted with 51 human RBPs, of which the majority of them were abundantly expressed in gonadal tissues and immune cells. We further performed a functional analysis of differentially expressed genes in mock-treated versus SARS-CoV-2-infected lung cells that revealed enrichment for the immune response, cytokine-mediated signaling, and metabolism-associated genes. This study also characterized the alternative splicing events in SARS-CoV-2-infected cells compared to the control, demonstrating that skipped exons and mutually exclusive exons were the most abundant events that potentially contributed to differential outcomes in response to the viral infection. A motif enrichment analysis on the RNA genomic sequence of SARS-CoV-2 clearly revealed the enrichment for RBPs such as SRSFs, PCBPs, ELAVs, and HNRNPs, suggesting the sponging of RBPs by the SARS-CoV-2 genome. A similar analysis to study the interactions of miRs with SARS-CoV-2 revealed functionally important miRs that were highly expressed in immune cells, suggesting that these interactions may contribute to the progression of the viral infection and modulate the host immune response across other human tissues. Given the need to understand the interactions of SARS-CoV-2 with key post-transcriptional regulators in the human genome, this study provided a systematic computational analysis to dissect the role of dysregulated post-transcriptional regulatory networks controlled by RBPs and miRs across tissue types during a SARS-CoV-2 infection.


Asunto(s)
Betacoronavirus/genética , Betacoronavirus/metabolismo , Infecciones por Coronavirus/virología , Redes Reguladoras de Genes , MicroARNs/genética , Neumonía Viral/virología , Procesamiento Postranscripcional del ARN , Proteínas de Unión al ARN/metabolismo , COVID-19 , Regulación de la Expresión Génica , Genoma Viral , Humanos , MicroARNs/metabolismo , Pandemias , Mapas de Interacción de Proteínas , Proteínas de Unión al ARN/genética , SARS-CoV-2
9.
bioRxiv ; 2020 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-32676599

RESUMEN

The outbreak of a novel coronavirus SARS-CoV-2 responsible for COVID-19 pandemic has caused worldwide public health emergency. Due to the constantly evolving nature of the coronaviruses, SARS-CoV-2 mediated alteration on post-transcriptional gene regulation across human tissues remains elusive. In this study, we analyze publicly available genomic datasets to systematically dissect the crosstalk and dysregulation of human post-transcriptional regulatory networks governed by RNA binding proteins (RBPs) and micro-RNAs (miRs), due to SARS-CoV-2 infection. We uncovered that 13 out of 29 SARS-CoV-2 encoded proteins directly interact with 51 human RBPs of which majority of them were abundantly expressed in gonadal tissues and immune cells. We further performed a functional analysis of differentially expressed genes in mock-treated versus SARS-CoV-2 infected lung cells that revealed enrichment for immune response, cytokine-mediated signaling, and metabolism associated genes. This study also characterized the alternative splicing events in SARS-CoV-2 infected cells compared to control demonstrating that skipped exons and mutually exclusive exons were the most abundant events that potentially contributed to differential outcomes in response to viral infection. Motif enrichment analysis on the RNA genomic sequence of SARS-CoV-2 clearly revealed the enrichment for RBPs such as SRSFs, PCBPs, ELAVs, and HNRNPs suggesting the sponging of RBPs by SARS-CoV-2 genome. A similar analysis to study the interactions of miRs with SARS-CoV-2 revealed functionally important miRs that were highly expressed in immune cells, suggesting that these interactions may contribute to the progression of the viral infection and modulate host immune response across other human tissues. Given the need to understand the interactions of SARS-CoV-2 with key post-transcriptional regulators in the human genome, this study provides a systematic computational analysis to dissect the role of dysregulated post-transcriptional regulatory networks controlled by RBPs and miRs, across tissues types during SARS-CoV-2 infection.

10.
Cell Rep ; 31(12): 107816, 2020 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-32579941

RESUMEN

Inhibition of anti-apoptotic proteins BCL-2 and MCL-1 to release pro-apoptotic protein BIM and reactivate cell death could potentially be an efficient strategy for the treatment of leukemia. Here, we show that a lncRNA, MORRBID, a selective transcriptional repressor of BIM, is overexpressed in human acute myeloid leukemia (AML), which is associated with poor overall survival. In both human and animal models, MORRBID hyperactivation correlates with two recurrent AML drivers, TET2 and FLT3ITD. Mice with individual mutations of Tet2 or Flt3ITD develop features of chronic myelomonocytic leukemia (CMML) and myeloproliferative neoplasm (MPN), respectively, and combined presence results in AML. We observe increased levels of Morrbid in murine models of CMML, MPN, and AML. Functionally, loss of Morrbid in these models induces increased expression of Bim and cell death in immature and mature myeloid cells, which results in reduced infiltration of leukemic cells in tissues and prolongs the survival of AML mice.


Asunto(s)
Proteína 11 Similar a Bcl2/metabolismo , Leucemia/genética , Leucemia/patología , Lesiones Precancerosas/genética , Lesiones Precancerosas/patología , ARN Largo no Codificante/metabolismo , Animales , Línea Celular Tumoral , Proliferación Celular/genética , Supervivencia Celular/genética , Proteínas de Unión al ADN/genética , Dioxigenasas , Modelos Animales de Enfermedad , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Ratones Endogámicos C57BL , Mutación/genética , Proteínas Proto-Oncogénicas/genética
11.
Mol Cell Biol ; 40(9)2020 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-32041821

RESUMEN

Circular RNAs (circRNAs) are a class of noncoding RNAs produced by a noncanonical form of alternative splicing called back-splicing. To investigate a potential role of circRNAs in the p53 pathway, we analyzed RNA sequencing (RNA-seq) data from colorectal cancer cell lines (HCT116, RKO, and SW48) that were untreated or treated with a DNA-damaging agent. Surprisingly, unlike the strong p53-dependent induction of hundreds of p53-induced mRNAs upon DNA damage, only a few circRNAs were upregulated from p53-induced genes. circ-MDM2, an annotated circRNA from the MDM2 locus, was one of the handful of circRNAs that originated from a p53-induced gene. Given the central role of MDM2 in suppressing p53 protein levels and p53 activity, we investigated the function of circ-MDM2 Knocking down circ-MDM2 with small interfering RNAs (siRNAs) that targeted circ-MDM2 did not alter MDM2 mRNA or MDM2 protein levels but resulted in increased basal p53 levels and growth defects in vitro and in vivo Consistent with these results, transcriptome profiling showed increased expression of several direct p53 targets, reduced retinoblastoma protein (Rb) phosphorylation, and defects in G1-S progression upon silencing circ-MDM2 Our results on the initial characterization of circ-MDM2 identify a new player from the MDM2 locus that suppresses p53 levels and cell cycle progression.


Asunto(s)
Proteínas Proto-Oncogénicas c-mdm2/genética , ARN Circular/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Ciclo Celular/genética , Línea Celular Tumoral , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Daño del ADN , Perfilación de la Expresión Génica/métodos , Células HCT116 , Humanos , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , ARN/metabolismo , ARN Circular/genética , ARN Mensajero/metabolismo , ARN Interferente Pequeño , Análisis de Secuencia de ARN/métodos , Proteína p53 Supresora de Tumor/genética
12.
Genes (Basel) ; 10(8)2019 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-31390792

RESUMEN

Recent developments in our understanding of the interactions between long non-coding RNAs (lncRNAs) and cellular components have improved treatment approaches for various human diseases including cancer, vascular diseases, and neurological diseases. Although investigation of specific lncRNAs revealed their role in the metabolism of cellular RNA, our understanding of their contribution to post-transcriptional regulation is relatively limited. In this study, we explore the role of lncRNAs in modulating alternative splicing and their impact on downstream protein-RNA interaction networks. Analysis of alternative splicing events across 39 lncRNA knockdown and wildtype RNA-sequencing datasets from three human cell lines-HeLa (cervical cancer), K562 (myeloid leukemia), and U87 (glioblastoma)-resulted in the high-confidence (false discovery rate (fdr) < 0.01) identification of 11,630 skipped exon events and 5895 retained intron events, implicating 759 genes to be impacted at the post-transcriptional level due to the loss of lncRNAs. We observed that a majority of the alternatively spliced genes in a lncRNA knockdown were specific to the cell type. In tandem, the functions annotated to the genes affected by alternative splicing across each lncRNA knockdown also displayed cell-type specificity. To understand the mechanism behind this cell-type-specific alternative splicing pattern, we analyzed RNA-binding protein (RBP)-RNA interaction profiles across the spliced regions in order to observe cell-type-specific alternative splice event RBP binding preference. Despite limited RBP binding data across cell lines, alternatively spliced events detected in lncRNA perturbation experiments were associated with RBPs binding in proximal intron-exon junctions in a cell-type-specific manner. The cellular functions affected by alternative splicing were also affected in a cell-type-specific manner. Based on the RBP binding profiles in HeLa and K562 cells, we hypothesize that several lncRNAs are likely to exhibit a sponge effect in disease contexts, resulting in the functional disruption of RBPs and their downstream functions. We propose that such lncRNA sponges can extensively rewire post-transcriptional gene regulatory networks by altering the protein-RNA interaction landscape in a cell-type-specific manner.


Asunto(s)
Empalme Alternativo , Neoplasias/genética , ARN Largo no Codificante/genética , Proteínas de Unión al ARN/metabolismo , Células HeLa , Humanos , Especificidad de Órganos , Unión Proteica , ARN Largo no Codificante/metabolismo , Proteínas de Unión al ARN/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA