Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 527
Filtrar
Más filtros

Base de datos
Tipo del documento
Intervalo de año de publicación
1.
Cancer Discov ; 14(10): 1774-1778, 2024 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-39363742

RESUMEN

People diagnosed with cancer and their formal and informal caregivers are increasingly faced with a deluge of complex information, thanks to rapid advancements in the type and volume of diagnostic, prognostic, and treatment data. This commentary discusses the opportunities and challenges that the society faces as we integrate large volumes of data into regular cancer care.


Asunto(s)
Neoplasias , Humanos , Neoplasias/terapia , Investigación Biomédica
2.
bioRxiv ; 2024 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-39386637

RESUMEN

Background: A key step towards understanding psychiatric disorders that disproportionately impact female mental health is delineating the emergence of sex-specific patterns of brain organization at the critical transition from childhood to adolescence. Prior work suggests that individual differences in the spatial organization of functional brain networks across the cortex are associated with psychopathology and differ systematically by sex. Aims: We aimed to evaluate the impact of sex on the spatial organization of person-specific functional brain networks. Method: We leveraged person-specific atlases of functional brain networks defined using nonnegative matrix factorization in a sample of n = 6437 youths from the Adolescent Brain Cognitive Development Study. Across independent discovery and replication samples, we used generalized additive models to uncover associations between sex and the spatial layout ("topography") of personalized functional networks (PFNs). Next, we trained support vector machines to classify participants' sex from multivariate patterns of PFN topography. Finally, we leveraged transcriptomic data from the Allen Human Brain Atlas to evaluate spatial correlations between sex differences in PFN topography and gene expression. Results: Sex differences in PFN topography were greatest in association networks including the fronto-parietal, ventral attention, and default mode networks. Machine learning models trained on participants' PFNs were able to classify participant sex with high accuracy. Brain regions with the greatest sex differences in PFN topography were enriched in expression of X-linked genes as well as genes expressed in astrocytes and excitatory neurons. Conclusions: Sex differences in PFN topography are robust, replicate across large-scale samples of youth, and are associated with expression patterns of X-linked genes. These results suggest a potential contributor to the female-biased risk in depressive and anxiety disorders that emerge at the transition from childhood to adolescence.

3.
Lancet Oncol ; 25(11): e581-e588, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39481414

RESUMEN

The development, application, and benchmarking of artificial intelligence (AI) tools to improve diagnosis, prognostication, and therapy in neuro-oncology are increasing at a rapid pace. This Policy Review provides an overview and critical assessment of the work to date in this field, focusing on diagnostic AI models of key genomic markers, predictive AI models of response before and after therapy, and differentiation of true disease progression from treatment-related changes, which is a considerable challenge based on current clinical care in neuro-oncology. Furthermore, promising future directions, including the use of AI for automated response assessment in neuro-oncology, are discussed.


Asunto(s)
Inteligencia Artificial , Humanos , Oncología Médica/métodos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/patología , Pronóstico , Resultado del Tratamiento
4.
Lancet Oncol ; 25(11): e589-e601, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39481415

RESUMEN

Technological advancements have enabled the extended investigation, development, and application of computational approaches in various domains, including health care. A burgeoning number of diagnostic, predictive, prognostic, and monitoring biomarkers are continuously being explored to improve clinical decision making in neuro-oncology. These advancements describe the increasing incorporation of artificial intelligence (AI) algorithms, including the use of radiomics. However, the broad applicability and clinical translation of AI are restricted by concerns about generalisability, reproducibility, scalability, and validation. This Policy Review intends to serve as the leading resource of recommendations for the standardisation and good clinical practice of AI approaches in health care, particularly in neuro-oncology. To this end, we investigate the repeatability, reproducibility, and stability of AI in response assessment in neuro-oncology in studies on factors affecting such computational approaches, and in publicly available open-source data and computational software tools facilitating these goals. The pathway for standardisation and validation of these approaches is discussed with the view of trustworthy AI enabling the next generation of clinical trials. We conclude with an outlook on the future of AI-enabled neuro-oncology.


Asunto(s)
Inteligencia Artificial , Oncología Médica , Humanos , Inteligencia Artificial/normas , Oncología Médica/normas , Reproducibilidad de los Resultados , Neoplasias Encefálicas/terapia
5.
Transl Psychiatry ; 14(1): 420, 2024 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-39368996

RESUMEN

Alzheimer's disease (AD) is associated with heterogeneous atrophy patterns. We employed a semi-supervised representation learning technique known as Surreal-GAN, through which we identified two latent dimensional representations of brain atrophy in symptomatic mild cognitive impairment (MCI) and AD patients: the "diffuse-AD" (R1) dimension shows widespread brain atrophy, and the "MTL-AD" (R2) dimension displays focal medial temporal lobe (MTL) atrophy. Critically, only R2 was associated with widely known sporadic AD genetic risk factors (e.g., APOE ε4) in MCI and AD patients at baseline. We then independently detected the presence of the two dimensions in the early stages by deploying the trained model in the general population and two cognitively unimpaired cohorts of asymptomatic participants. In the general population, genome-wide association studies found 77 genes unrelated to APOE differentially associated with R1 and R2. Functional analyses revealed that these genes were overrepresented in differentially expressed gene sets in organs beyond the brain (R1 and R2), including the heart (R1) and the pituitary gland, muscle, and kidney (R2). These genes were enriched in biological pathways implicated in dendritic cells (R2), macrophage functions (R1), and cancer (R1 and R2). Several of them were "druggable genes" for cancer (R1), inflammation (R1), cardiovascular diseases (R1), and diseases of the nervous system (R2). The longitudinal progression showed that APOE ε4, amyloid, and tau were associated with R2 at early asymptomatic stages, but this longitudinal association occurs only at late symptomatic stages in R1. Our findings deepen our understanding of the multifaceted pathogenesis of AD beyond the brain. In early asymptomatic stages, the two dimensions are associated with diverse pathological mechanisms, including cardiovascular diseases, inflammation, and hormonal dysfunction-driven by genes different from APOE-which may collectively contribute to the early pathogenesis of AD. All results are publicly available at https://labs-laboratory.com/medicine/ .


Asunto(s)
Enfermedad de Alzheimer , Atrofia , Disfunción Cognitiva , Estudio de Asociación del Genoma Completo , Humanos , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Masculino , Femenino , Disfunción Cognitiva/genética , Disfunción Cognitiva/patología , Anciano , Encéfalo/patología , Imagen por Resonancia Magnética , Lóbulo Temporal/patología , Anciano de 80 o más Años , Apolipoproteína E4/genética , Persona de Mediana Edad
6.
EBioMedicine ; 109: 105399, 2024 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-39437659

RESUMEN

BACKGROUND: Brain ageing is highly heterogeneous, as it is driven by a variety of normal and neuropathological processes. These processes may differentially affect structural and functional brain ageing across individuals, with more pronounced ageing (older brain age) during midlife being indicative of later development of dementia. Here, we examined whether brain-ageing heterogeneity in unimpaired older adults related to neurodegeneration, different cognitive trajectories, genetic and amyloid-beta (Aß) profiles, and to predicted progression to Alzheimer's disease (AD). METHODS: Functional and structural brain age measures were obtained for resting-state functional MRI and structural MRI, respectively, in 3460 cognitively normal individuals across an age range spanning 42-85 years. Participants were categorised into four groups based on the difference between their chronological and predicted age in each modality: advanced age in both (n = 291), resilient in both (n = 260) or advanced in one/resilient in the other (n = 163/153). With the resilient group as the reference, brain-age groups were compared across neuroimaging features of neuropathology (white matter hyperintensity volume, neuronal loss measured with Neurite Orientation Dispersion and Density Imaging, AD-specific atrophy patterns measured with the Spatial Patterns of Abnormality for Recognition of Early Alzheimer's Disease index, amyloid burden using amyloid positron emission tomography (PET), progression to mild cognitive impairment and baseline and longitudinal cognitive measures (trail making task, mini mental state examination, digit symbol substitution task). FINDINGS: Individuals with advanced structural and functional brain-ages had more features indicative of neurodegeneration and they had poor cognition. Individuals with a resilient brain-age in both modalities had a genetic variant that has been shown to be associated with age of onset of AD. Mixed brain-age was associated with selective cognitive deficits. INTERPRETATION: The advanced group displayed evidence of increased atrophy across all neuroimaging features that was not found in either of the mixed groups. This is in line with biomarkers of preclinical AD and cerebrovascular disease. These findings suggest that the variation in structural and functional brain ageing across individuals reflects the degree of underlying neuropathological processes and may indicate the propensity to develop dementia in later life. FUNDING: The National Institute on Aging, the National Institutes of Health, the Swiss National Science Foundation, the Kaiser Foundation Research Institute and the National Heart, Lung, and Blood Institute.

7.
Artículo en Inglés | MEDLINE | ID: mdl-39371474

RESUMEN

Morphometricity examines the global statistical association between brain morphology and an observable trait, and is defined as the proportion of the trait variation attributable to brain morphology. In this work, we propose an accurate morphometricity estimator based on the generalized random effects (GRE) model, and perform morphometricity analyses on five cognitive traits in an Alzheimer's study. Our empirical study shows that the proposed GRE model outperforms the widely used LME model on both simulation and real data. In addition, we extend morphometricity estimation from the whole brain to the focal-brain level, and examine and quantify both global and regional neuroanatomical signatures of the cognitive traits. Our global analysis reveals 1) a relatively strong anatomical basis for ADAS13, 2) intermediate ones for MMSE, CDRSB and FAQ, and 3) a relatively weak one for RAVLT.learning. The top associations identified from our regional morphometricity analysis include those between all five cognitive traits and multiple regions such as hippocampus, amygdala, and inferior lateral ventricles. As expected, the identified regional associations are weaker than the global ones. While the whole brain analysis is more powerful in identifying higher morphometricity, the regional analysis could localize the neuroanatomical signatures of the studied cognitive traits and thus provide valuable information in imaging and cognitive biomarker discovery for normal and/or disordered brain research.

8.
ArXiv ; 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39314511

RESUMEN

Machine learning (ML) is revolutionizing many areas of engineering and science, including healthcare. However, it is also facing a reproducibility crisis, especially in healthcare. ML models that are carefully constructed from and evaluated on data from one part of the population may not generalize well on data from a different population group, or acquisition instrument settings and acquisition protocols. We tackle this problem in the context of neuroimaging of Alzheimer's disease (AD), schizophrenia (SZ) and brain aging. We develop a weighted empirical risk minimization approach that optimally combines data from a source group, e.g., subjects are stratified by attributes such as sex, age group, race and clinical cohort to make predictions on a target group, e.g., other sex, age group, etc. using a small fraction (10%) of data from the target group. We apply this method to multi-source data of 15,363 individuals from 20 neuroimaging studies to build ML models for diagnosis of AD and SZ, and estimation of brain age. We found that this approach achieves substantially better accuracy than existing domain adaptation techniques: it obtains area under curve greater than 0.95 for AD classification, area under curve greater than 0.7 for SZ classification and mean absolute error less than 5 years for brain age prediction on all target groups, achieving robustness to variations of scanners, protocols, and demographic or clinical characteristics. In some cases, it is even better than training on all data from the target group, because it leverages the diversity and size of a larger training set. We also demonstrate the utility of our models for prognostic tasks such as predicting disease progression in individuals with mild cognitive impairment. Critically, our brain age prediction models lead to new clinical insights regarding correlations with neurophysiological tests. In summary, we present a relatively simple methodology, along with ample experimental evidence, supporting the good generalization of ML models to new datasets and patient cohorts.

9.
J Med Imaging (Bellingham) ; 11(5): 054001, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39220048

RESUMEN

Purpose: Glioblastoma (GBM) is the most common and aggressive primary adult brain tumor. The standard treatment approach is surgical resection to target the enhancing tumor mass, followed by adjuvant chemoradiotherapy. However, malignant cells often extend beyond the enhancing tumor boundaries and infiltrate the peritumoral edema. Traditional supervised machine learning techniques hold potential in predicting tumor infiltration extent but are hindered by the extensive resources needed to generate expertly delineated regions of interest (ROIs) for training models on tissue most and least likely to be infiltrated. Approach: We developed a method combining expert knowledge and training-based data augmentation to automatically generate numerous training examples, enhancing the accuracy of our model for predicting tumor infiltration through predictive maps. Such maps can be used for targeted supra-total surgical resection and other therapies that might benefit from intensive yet well-targeted treatment of infiltrated tissue. We apply our method to preoperative multi-parametric magnetic resonance imaging (mpMRI) scans from a subset of 229 patients of a multi-institutional consortium (Radiomics Signatures for Precision Diagnostics) and test the model on subsequent scans with pathology-proven recurrence. Results: Leave-one-site-out cross-validation was used to train and evaluate the tumor infiltration prediction model using initial pre-surgical scans, comparing the generated prediction maps with follow-up mpMRI scans confirming recurrence through post-resection tissue analysis. Performance was measured by voxel-wised odds ratios (ORs) across six institutions: University of Pennsylvania (OR: 9.97), Ohio State University (OR: 14.03), Case Western Reserve University (OR: 8.13), New York University (OR: 16.43), Thomas Jefferson University (OR: 8.22), and Rio Hortega (OR: 19.48). Conclusions: The proposed model demonstrates that mpMRI analysis using deep learning can predict infiltration in the peri-tumoral brain region for GBM patients without needing to train a model using expert ROI drawings. Results for each institution demonstrate the model's generalizability and reproducibility.

10.
Brain Commun ; 6(5): fcae276, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39229494

RESUMEN

Reduced brain volumes and more prominent white matter hyperintensities on MRI scans are commonly observed among older adults without cognitive impairment. However, it remains unclear whether rates of change in these measures among cognitively normal adults differ as a function of genetic risk for late-onset Alzheimer's disease, including APOE-ɛ4, APOE-ɛ2 and Alzheimer's disease polygenic risk scores (AD-PRS), and whether these relationships are influenced by other variables. This longitudinal study examined the trajectories of regional brain volumes and white matter hyperintensities in relationship to APOE genotypes (N = 1541) and AD-PRS (N = 1093) in a harmonized dataset of middle-aged and older individuals with normal cognition at baseline (mean baseline age = 66 years, SD = 9.6) and an average of 5.3 years of MRI follow-up (max = 24 years). Atrophy on volumetric MRI scans was quantified in three ways: (i) a composite score of regions vulnerable to Alzheimer's disease (SPARE-AD); (ii) hippocampal volume; and (iii) a composite score of regions indexing advanced non-Alzheimer's disease-related brain aging (SPARE-BA). Global white matter hyperintensity volumes were derived from fluid attenuated inversion recovery (FLAIR) MRI. Using linear mixed effects models, there was an APOE-ɛ4 gene-dose effect on atrophy in the SPARE-AD composite and hippocampus, with greatest atrophy among ɛ4/ɛ4 carriers, followed by ɛ4 heterozygouts, and lowest among ɛ3 homozygouts and ɛ2/ɛ2 and ɛ2/ɛ3 carriers, who did not differ from one another. The negative associations of APOE-ɛ4 with atrophy were reduced among those with higher education (P < 0.04) and younger baseline ages (P < 0.03). Higher AD-PRS were also associated with greater atrophy in SPARE-AD (P = 0.035) and the hippocampus (P = 0.014), independent of APOE-ɛ4 status. APOE-ɛ2 status (ɛ2/ɛ2 and ɛ2/ɛ3 combined) was not related to baseline levels or atrophy in SPARE-AD, SPARE-BA or the hippocampus, but was related to greater increases in white matter hyperintensities (P = 0.014). Additionally, there was an APOE-ɛ4 × AD-PRS interaction in relation to white matter hyperintensities (P = 0.038), with greater increases in white matter hyperintensities among APOE-ɛ4 carriers with higher AD-PRS. APOE and AD-PRS associations with MRI measures did not differ by sex. These results suggest that APOE-ɛ4 and AD-PRS independently and additively influence longitudinal declines in brain volumes sensitive to Alzheimer's disease and synergistically increase white matter hyperintensity accumulation among cognitively normal individuals. Conversely, APOE-ɛ2 primarily influences white matter hyperintensity accumulation, not brain atrophy. Results are consistent with the view that genetic factors for Alzheimer's disease influence atrophy in a regionally specific manner, likely reflecting preclinical neurodegeneration, and that Alzheimer's disease risk genes contribute to white matter hyperintensity formation.

11.
Nat Aging ; 4(9): 1263-1278, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39143319

RESUMEN

Infections have been associated with the incidence of Alzheimer disease and related dementias, but the mechanisms responsible for these associations remain unclear. Using a multicohort approach, we found that influenza, viral, respiratory, and skin and subcutaneous infections were associated with increased long-term dementia risk. These infections were also associated with region-specific brain volume loss, most commonly in the temporal lobe. We identified 260 out of 942 immunologically relevant proteins in plasma that were differentially expressed in individuals with an infection history. Of the infection-related proteins, 35 predicted volumetric changes in brain regions vulnerable to infection-specific atrophy. Several of these proteins, including PIK3CG, PACSIN2, and PRKCB, were related to cognitive decline and plasma biomarkers of dementia (Aß42/40, GFAP, NfL, pTau-181). Genetic variants that influenced expression of immunologically relevant infection-related proteins, including ITGB6 and TLR5, predicted brain volume loss. Our findings support the role of infections in dementia risk and identify molecular mediators by which infections may contribute to neurodegeneration.


Asunto(s)
Atrofia , Encéfalo , Disfunción Cognitiva , Proteómica , Humanos , Atrofia/patología , Encéfalo/patología , Encéfalo/inmunología , Encéfalo/metabolismo , Disfunción Cognitiva/inmunología , Masculino , Femenino , Anciano , Biomarcadores/sangre , Persona de Mediana Edad
12.
Alzheimers Dement ; 20(9): 6486-6505, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39129354

RESUMEN

INTRODUCTION: Plasma proteomic analyses of unique brain atrophy patterns may illuminate peripheral drivers of neurodegeneration and identify novel biomarkers for predicting clinically relevant outcomes. METHODS: We identified proteomic signatures associated with machine learning-derived aging- and Alzheimer's disease (AD) -related brain atrophy patterns in the Baltimore Longitudinal Study of Aging (n = 815). Using data from five cohorts, we examined whether candidate proteins were associated with AD endophenotypes and long-term dementia risk. RESULTS: Plasma proteins associated with distinct patterns of age- and AD-related atrophy were also associated with plasma/cerebrospinal fluid (CSF) AD biomarkers, cognition, AD risk, as well as mid-life (20-year) and late-life (8-year) dementia risk. EFEMP1 and CXCL12 showed the most consistent associations across cohorts and were mechanistically implicated as determinants of brain structure using genetic methods, including Mendelian randomization. DISCUSSION: Our findings reveal plasma proteomic signatures of unique aging- and AD-related brain atrophy patterns and implicate EFEMP1 and CXCL12 as important molecular drivers of neurodegeneration. HIGHLIGHTS: Plasma proteomic signatures are associated with unique patterns of brain atrophy. Brain atrophy-related proteins predict clinically relevant outcomes across cohorts. Genetic variation underlying plasma EFEMP1 and CXCL12 influences brain structure. EFEMP1 and CXCL12 may be important molecular drivers of neurodegeneration.


Asunto(s)
Enfermedad de Alzheimer , Biomarcadores , Encéfalo , Quimiocina CXCL12 , Proteínas de la Matriz Extracelular , Proteómica , Humanos , Biomarcadores/sangre , Quimiocina CXCL12/sangre , Femenino , Masculino , Anciano , Enfermedad de Alzheimer/sangre , Enfermedad de Alzheimer/patología , Estudios Longitudinales , Encéfalo/patología , Proteínas de la Matriz Extracelular/sangre , Envejecimiento , Atrofia/patología , Anciano de 80 o más Años , Persona de Mediana Edad , Estudios de Cohortes
13.
ArXiv ; 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39070036

RESUMEN

Availability of large and diverse medical datasets is often challenged by privacy and data sharing restrictions. For successful application of machine learning techniques for disease diagnosis, prognosis, and precision medicine, large amounts of data are necessary for model building and optimization. To help overcome such limitations in the context of brain MRI, we present GenMIND: a collection of generative models of normative regional volumetric features derived from structural brain imaging. GenMIND models are trained on real brain imaging regional volumetric measures from the iSTAGING consortium, which encompasses over 40,000 MRI scans across 13 studies, incorporating covariates such as age, sex, and race. Leveraging GenMIND, we produce and offer 18,000 synthetic samples spanning the adult lifespan (ages 22-90 years), alongside the model's capability to generate unlimited data. Experimental results indicate that samples generated from GenMIND agree with the distributions obtained from real data. Most importantly, the generated normative data significantly enhance the accuracy of downstream machine learning models on tasks such as disease classification. Data and models are available at: https://huggingface.co/spaces/rongguangw/GenMIND.

14.
Nat Ment Health ; 2(2): 164-176, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38948238

RESUMEN

Major depressive disorder (MDD) is a heterogeneous clinical syndrome with widespread subtle neuroanatomical correlates. Our objective was to identify the neuroanatomical dimensions that characterize MDD and predict treatment response to selective serotonin reuptake inhibitor (SSRI) antidepressants or placebo. In the COORDINATE-MDD consortium, raw MRI data were shared from international samples (N = 1,384) of medication-free individuals with first-episode and recurrent MDD (N = 685) in a current depressive episode of at least moderate severity, but not treatment-resistant depression, as well as healthy controls (N = 699). Prospective longitudinal data on treatment response were available for a subset of MDD individuals (N = 359). Treatments were either SSRI antidepressant medication (escitalopram, citalopram, sertraline) or placebo. Multi-center MRI data were harmonized, and HYDRA, a semi-supervised machine-learning clustering algorithm, was utilized to identify patterns in regional brain volumes that are associated with disease. MDD was optimally characterized by two neuroanatomical dimensions that exhibited distinct treatment responses to placebo and SSRI antidepressant medications. Dimension 1 was characterized by preserved gray and white matter (N = 290 MDD), whereas Dimension 2 was characterized by widespread subtle reductions in gray and white matter (N = 395 MDD) relative to healthy controls. Although there were no significant differences in age of onset, years of illness, number of episodes, or duration of current episode between dimensions, there was a significant interaction effect between dimensions and treatment response. Dimension 1 showed a significant improvement in depressive symptoms following treatment with SSRI medication (51.1%) but limited changes following placebo (28.6%). By contrast, Dimension 2 showed comparable improvements to either SSRI (46.9%) or placebo (42.2%) (ß = -18.3, 95% CI (-34.3 to -2.3), P = 0.03). Findings from this case-control study indicate that neuroimaging-based markers can help identify the disease-based dimensions that constitute MDD and predict treatment response.

15.
medRxiv ; 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38947056

RESUMEN

Alzheimer's Disease (AD) is characterized by its complex and heterogeneous etiology and gradual progression, leading to high drug failure rates in late-stage clinical trials. In order to better stratify individuals at risk for AD and discern potential therapeutic targets we employed a novel procedure utilizing cell-based co-regulated gene networks and polygenic risk scores (cbPRSs). After defining genetic subtypes using extremes of cbPRS distributions, we evaluated correlations of the genetic subtypes with previously defined AD subtypes defined on the basis of domain-specific cognitive functioning and neuroimaging biomarkers. Employing a PageRank algorithm, we identified priority gene targets for the genetic subtypes. Pathway analysis of priority genes demonstrated associations with neurodegeneration and suggested candidate drugs currently utilized in diabetes, hypertension, and epilepsy for repositioning in AD. Experimental validation utilizing human induced pluripotent stem cell (hiPSC)-derived astrocytes demonstrated the modifying effects of estradiol, levetiracetam, and pioglitazone on expression of APOE and complement C4 genes, suggesting potential repositioning for AD.

16.
Annu Rev Biomed Data Sci ; 7(1): 391-418, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38848574

RESUMEN

Alzheimer's disease (AD) is a critical national concern, affecting 5.8 million people and costing more than $250 billion annually. However, there is no available cure. Thus, effective strategies are in urgent need to discover AD biomarkers for disease early detection and drug development. In this review, we study AD from a biomedical data scientist perspective to discuss the four fundamental components in AD research: genetics (G), molecular multiomics (M), multimodal imaging biomarkers (B), and clinical outcomes (O) (collectively referred to as the GMBO framework). We provide a comprehensive review of common statistical and informatics methodologies for each component within the GMBO framework, accompanied by the major findings from landmark AD studies. Our review highlights the potential of multimodal biobank data in addressing key challenges in AD, such as early diagnosis, disease heterogeneity, and therapeutic development. We identify major hurdles in AD research, including data scarcity and complexity, and advocate for enhanced collaboration, data harmonization, and advanced modeling techniques. This review aims to be an essential guide for understanding current biomedical data science strategies in AD research, emphasizing the need for integrated, multidisciplinary approaches to advance our understanding and management of AD.


Asunto(s)
Enfermedad de Alzheimer , Biomarcadores , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/diagnóstico , Enfermedad de Alzheimer/metabolismo , Humanos , Biomarcadores/metabolismo , Genómica/métodos , Investigación Biomédica/métodos , Multiómica
17.
bioRxiv ; 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38915636

RESUMEN

INTRODUCTION: The effects of sex, race, and Apolipoprotein E (APOE) - Alzheimer's disease (AD) risk factors - on white matter integrity are not well characterized. METHODS: Diffusion MRI data from nine well-established longitudinal cohorts of aging were free-water (FW)-corrected and harmonized. This dataset included 4,702 participants (age=73.06 ± 9.75) with 9,671 imaging sessions over time. FW and FW-corrected fractional anisotropy (FAFWcorr) were used to assess differences in white matter microstructure by sex, race, and APOE-ε4 carrier status. RESULTS: Sex differences in FAFWcorr in association and projection tracts, racial differences in FAFWcorr in projection tracts, and APOE-ε4 differences in FW limbic and occipital transcallosal tracts were most pronounced. DISCUSSION: There are prominent differences in white matter microstructure by sex, race, and APOE-ε4 carrier status. This work adds to our understanding of disparities in AD. Additional work to understand the etiology of these differences is warranted.

18.
AMIA Jt Summits Transl Sci Proc ; 2024: 344-353, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38827096

RESUMEN

Neurodegenerative processes are increasingly recognized as potential causative factors in Alzheimer's disease (AD) pathogenesis. While many studies have leveraged mediation analysis models to elucidate the underlying mechanisms linking genetic variants to AD diagnostic outcomes, the majority have predominantly focused on regional brain measure as a mediator, thereby compromising the granularity of the imaging data. In our investigation, using the imaging genetics data from a landmark AD cohort, we contrasted both region-based and voxel-based brain measurements as imaging endophenotypes, and examined their roles in mediating genetic effects on AD outcomes. Our findings underscored that using voxel-based morphometry offers enhanced statistical power. Moreover, we delineated specific mediation pathways between SNP, brain volume, and AD outcomes, shedding light on the intricate relationship among these variables.

19.
Nat Aging ; 4(9): 1290-1307, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38942983

RESUMEN

Investigating the genetic underpinnings of human aging is essential for unraveling the etiology of and developing actionable therapies for chronic diseases. Here, we characterize the genetic architecture of the biological age gap (BAG; the difference between machine learning-predicted age and chronological age) across nine human organ systems in 377,028 participants of European ancestry from the UK Biobank. The BAGs were computed using cross-validated support vector machines, incorporating imaging, physical traits and physiological measures. We identify 393 genomic loci-BAG pairs (P < 5 × 10-8) linked to the brain, eye, cardiovascular, hepatic, immune, metabolic, musculoskeletal, pulmonary and renal systems. Genetic variants associated with the nine BAGs are predominantly specific to the respective organ system (organ specificity) while exerting pleiotropic links with other organ systems (interorgan cross-talk). We find that genetic correlation between the nine BAGs mirrors their phenotypic correlation. Further, a multiorgan causal network established from two-sample Mendelian randomization and latent causal variance models revealed potential causality between chronic diseases (for example, Alzheimer's disease and diabetes), modifiable lifestyle factors (for example, sleep duration and body weight) and multiple BAGs. Our results illustrate the potential for improving human organ health via a multiorgan network, including lifestyle interventions and drug repurposing strategies.


Asunto(s)
Envejecimiento , Humanos , Envejecimiento/genética , Envejecimiento/fisiología , Estudio de Asociación del Genoma Completo , Masculino , Femenino , Anciano , Persona de Mediana Edad , Reino Unido , Fenotipo , Especificidad de Órganos
20.
Med Image Anal ; 97: 103231, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38941858

RESUMEN

Alzheimer's disease (AD) is a complex neurodegenerative disorder that has impacted millions of people worldwide. The neuroanatomical heterogeneity of AD has made it challenging to fully understand the disease mechanism. Identifying AD subtypes during the prodromal stage and determining their genetic basis would be immensely valuable for drug discovery and subsequent clinical treatment. Previous studies that clustered subgroups typically used unsupervised learning techniques, neglecting the survival information and potentially limiting the insights gained. To address this problem, we propose an interpretable survival analysis method called Deep Clustering Survival Machines (DCSM), which combines both discriminative and generative mechanisms. Similar to mixture models, we assume that the timing information of survival data can be generatively described by a mixture of parametric distributions, referred to as expert distributions. We learn the weights of these expert distributions for individual instances in a discriminative manner by leveraging their features. This allows us to characterize the survival information of each instance through a weighted combination of the learned expert distributions. We demonstrate the superiority of the DCSM method by applying this approach to cluster patients with mild cognitive impairment (MCI) into subgroups with different risks of converting to AD. Conventional clustering measurements for survival analysis along with genetic association studies successfully validate the effectiveness of the proposed method and characterize our clustering findings.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/genética , Humanos , Análisis por Conglomerados , Anciano , Femenino , Análisis de Supervivencia , Masculino , Algoritmos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA