Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Más filtros

Base de datos
Tipo del documento
Intervalo de año de publicación
1.
bioRxiv ; 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38496518

RESUMEN

CD4 T cells are essential for immunity to M. tuberculosis (Mtb), and emerging evidence indicates that IL-17-producing Th17 cells contribute to immunity to Mtb. While identifying protective T cell effector functions is important for TB vaccine design, T cell antigen specificity is also likely to be important. To identify antigens that induce protective immunity, we reasoned that as in other pathogens, effective immune recognition drives sequence diversity in individual Mtb antigens. We previously identified Mtb genes under evolutionary diversifying selection pressure whose products we term Rare Variable Mtb Antigens (RVMA). Here, in two distinct human cohorts with recent exposure to TB, we found that RVMA preferentially induce CD4 T cells that express RoRγt and produce IL-17, in contrast to 'classical' Mtb antigens that induce T cells that produce IFNγ. Our results suggest that RVMA can be valuable antigens in vaccines for those already infected with Mtb to amplify existing antigen-specific Th17 responses to prevent TB disease.

2.
Artículo en Inglés | MEDLINE | ID: mdl-38366732

RESUMEN

Infection with Mycobacterium tuberculosis (Mtb) in people with HIV (PWH) is associated with depletion of Mtb-specific CD4 T cell responses, increased risk of progression to active tuberculosis (TB) disease, and increased immune activation. Although higher HIV viral loads have been reported in Mtb/HIV co-infection, the extent to which Mtb infection and TB disease impact the frequency and phenotype of HIV-specific T cell responses has not been well described. We enrolled a cohort of PWH in Kenya across a spectrum of Mtb infection states, including those with no evidence of Mtb infection, latent Mtb infection (LTBI), and active pulmonary TB disease, and evaluated the frequency, immune activation, and cytotoxicity phenotype of HIV-specific CD4 and CD8 T cell responses in peripheral blood by flow cytometry. We found evidence of depletion of HIV-specific CD4 and CD8 T cells in people with TB, but not with LTBI. Expression of the immune activation markers human leukocyte antigen-DR isotype (HLA-DR) and Ki67 and of the cytotoxic molecules granzyme B and perforin were increased in total CD4 and CD8 T cell populations in individuals with TB, although expression of these markers by HIV-specific CD4 and CD8 T cells did not differ by Mtb infection status. These data suggest that TB is associated with overall increased T cell activation and cytotoxicity and with depletion of HIV-specific CD4 and CD8 T cells, which may contribute to further impairment of T cell-mediated immune control of HIV replication in the setting of TB.

4.
Tuberculosis (Edinb) ; 139: 102328, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36871409

RESUMEN

Following exposure to Mycobacterium tuberculosis (Mtb), a coordinated host response comprising both pro- and anti-inflammatory cytokines is critical for pathogen control. Although tuberculosis (TB) remains the leading cause of death among people with human immunodeficiency virus (HIV), the impact of HIV infection on Mtb-specific immune responses remains unclear. In this cross-sectional study of TB-exposed household contacts with and without HIV, we collected remaining supernatant from interferon-gamma release assay (IGRA) testing (QuantiFERON-TB Gold Plus [QFT-Plus]) and measured Mtb-specific pro-inflammatory, anti-inflammatory, and regulatory cytokine responses with a multiplex assay of 11 analytes. While people with HIV had lower responses to mitogen stimulation for some cytokines (granulocyte-macrophage colony-stimulating factor [GM-CSF], interleukin [IL]-2, IL-10, IL-17A, IL-22), there was no difference in cytokine levels for people with and without HIV following stimulation with Mtb-specific antigens. Future studies are necessary to explore whether changes in Mtb-specific cytokine responses over time are associated with distinct clinical outcomes following exposure to TB.


Asunto(s)
Infecciones por VIH , Tuberculosis Latente , Mycobacterium tuberculosis , Tuberculosis , Humanos , Citocinas , Estudios Transversales , Interferón gamma , Antígenos Bacterianos , Tuberculosis/microbiología , Ensayos de Liberación de Interferón gamma , Tuberculosis Latente/microbiología
5.
Lancet HIV ; 9(11): e791-e800, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36240834

RESUMEN

New tuberculosis vaccine candidates that are in the development pipeline need to be studied in people with HIV, who are at high risk of acquiring Mycobacterium tuberculosis infection and tuberculosis disease and tend to develop less robust vaccine-induced immune responses. To address the gaps in developing tuberculosis vaccines for people with HIV, a series of symposia was held that posed six framing questions to a panel of international experts: What is the use case or rationale for developing tuberculosis vaccines? What is the landscape of tuberculosis vaccines? Which vaccine candidates should be prioritised? What are the tuberculosis vaccine trial design considerations? What is the role of immunological correlates of protection? What are the gaps in preclinical models for studying tuberculosis vaccines? The international expert panel formulated consensus statements to each of the framing questions, with the intention of informing tuberculosis vaccine development and the prioritisation of clinical trials for inclusion of people with HIV.


Asunto(s)
Infecciones por VIH , Mycobacterium tuberculosis , Vacunas contra la Tuberculosis , Tuberculosis , Humanos , Infecciones por VIH/complicaciones , Tuberculosis/prevención & control
6.
J Pediatric Infect Dis Soc ; 11(Supplement_3): S110-S116, 2022 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-36314550

RESUMEN

Tuberculosis (TB) is a leading cause of global child mortality. Until the turn of the 21st century, Mycobacterium bovis bacille Calmette-Guerin (BCG) was the only vaccine to prevent TB. The pediatric TB vaccine pipeline has advanced in the past decade to include the evaluation of novel whole cell vaccines to replace infant BCG and investigation of subunit and whole cell vaccines to boost TB immunity during adolescence. We describe the history of BCG, current TB vaccine candidates in clinical trials, and the challenges and opportunities for future TB vaccine research in children. Children are a critical target population for TB vaccines, and expansion of the pediatric TB vaccine pipeline is urgently needed to end the TB pandemic.


Asunto(s)
Mycobacterium bovis , Mycobacterium tuberculosis , Vacunas contra la Tuberculosis , Tuberculosis , Humanos , Niño , Vacunas contra la Tuberculosis/uso terapéutico , Vacuna BCG , Tuberculosis/prevención & control , Tuberculosis/epidemiología
7.
J Clin Invest ; 132(18)2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-35862216

RESUMEN

A once-weekly oral dose of isoniazid and rifapentine for 3 months (3HP) is recommended by the CDC for treatment of latent tuberculosis infection (LTBI). The aim of this study is to assess 3HP-mediated clearance of M. tuberculosis bacteria in macaques with asymptomatic LTBI. Twelve Indian-origin rhesus macaques were infected with a low dose (~10 CFU) of M. tuberculosis CDC1551 via aerosol. Six animals were treated with 3HP and 6 were left untreated. The animals were imaged via PET/CT at frequent intervals. Upon treatment completion, all animals except 1 were coinfected with SIV to assess reactivation of LTBI to active tuberculosis (ATB). Four of 6 treated macaques showed no evidence of persistent bacilli or extrapulmonary spread until the study end point. PET/CT demonstrated the presence of significantly more granulomas in untreated animals relative to the treated group. The untreated animals harbored persistent bacilli and demonstrated tuberculosis (TB) reactivation following SIV coinfection, while none of the treated animals reactivated to ATB. 3HP treatment effectively reduced persistent infection with M. tuberculosis and prevented reactivation of TB in latently infected macaques.


Asunto(s)
Tuberculosis Latente , Mycobacterium tuberculosis , Tuberculosis , Animales , Antituberculosos/farmacología , Isoniazida/farmacología , Tuberculosis Latente/tratamiento farmacológico , Tuberculosis Latente/microbiología , Pulmón , Macaca mulatta , Tomografía Computarizada por Tomografía de Emisión de Positrones , Rifampin/análogos & derivados
8.
Front Immunol ; 13: 856906, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35514994

RESUMEN

Tuberculosis (TB) is among the leading causes of death worldwide from a single infectious agent, second only to COVID-19 in 2020. TB is caused by infection with Mycobacterium tuberculosis (Mtb), that results either in a latent or active form of disease, the latter associated with Mtb spread. In the absence of an effective vaccine, epidemiologic modeling suggests that aggressive treatment of individuals with active TB (ATB) may curb spread. Yet, clinical discrimination between latent (LTB) and ATB remains a challenge. While antibodies are widely used to diagnose many infections, the utility of antibody-based tests to diagnose ATB has only regained significant traction recently. Specifically, recent interest in the humoral immune response to TB has pointed to potential differences in both targeted antigens and antibody features that can discriminate latent and active TB. Here we aimed to integrate these observations and broadly profile the humoral immune response across individuals with LTB or ATB, with and without HIV co-infection, to define the most discriminatory humoral properties and diagnose TB disease more easily. Using 209 Mtb antigens, striking differences in antigen-recognition were observed across latently and actively infected individuals that was modulated by HIV serostatus. However, ATB and LTB could be discriminated, irrespective of HIV-status, based on a combination of both antibody levels and Fc receptor-binding characteristics targeting both well characterized (like lipoarabinomannan, 38 kDa or antigen 85) but also novel Mtb antigens (including Rv1792, Rv1528, Rv2435C or Rv1508). These data reveal new Mtb-specific immunologic markers that can improve the classification of ATB versus LTB.


Asunto(s)
COVID-19 , Infecciones por VIH , Tuberculosis Latente , Tuberculosis , Anticuerpos , Infecciones por VIH/complicaciones , Humanos
9.
Diabetes Care ; 45(4): 880-887, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35168250

RESUMEN

OBJECTIVE: In cross-sectional U.S. studies, patients with diabetes had twice the prevalence of latent tuberculosis infection (LTBI) compared with those without diabetes. However, whether LTBI contributes to diabetes risk is unknown. We used longitudinal data to determine if LTBI is associated with increased diabetes incidence. RESEARCH DESIGN AND METHODS: We conducted a retrospective cohort study among U.S. Veterans receiving care in the Veterans Health Administration from 2000 to 2015. Eligibility included all patients without preexisting diabetes who received a tuberculin skin test (TST) or interferon-γ release assay (IGRA). We excluded patients with a history of active TB and those diagnosed with diabetes before or within 2 years after LTBI testing. Patients were followed until diabetes diagnosis, death, or 2015. LTBI was defined as TST or IGRA positive. Incident diabetes was defined by use of ICD-9 codes in combination with a diabetes drug prescription. RESULTS: Among 574,113 eligible patients, 5.3% received both TST/IGRA, 79.1% received TST only, and 15.6% received IGRA only. Overall, 6.6% had LTBI, and there were 2,535,149 person-years (PY) of follow-up after LTBI testing (median 3.2 years). The diabetes incidence rate (per 100,000 PY) was greater in patients with LTBI compared with those without (1,012 vs. 744; hazard ratio [HR] 1.4 [95% CI 1.3-1.4]). Increased diabetes incidence persisted after adjustment for covariates (adjusted HR [aHR] 1.2 [95% CI 1.2-1.3]) compared with those without LTBI. Among patients with LTBI, diabetes incidence was similar in those treated for LTBI compared with those who were not treated (aHR 1.0 [95% CI 0.9-1.1]). CONCLUSIONS: Comprehensive longitudinal data indicate that LTBI is associated with increased diabetes incidence. These results have implications for people with LTBI, ∼25% of the global population.


Asunto(s)
Diabetes Mellitus , Tuberculosis Latente , Estudios Transversales , Diabetes Mellitus/epidemiología , Humanos , Ensayos de Liberación de Interferón gamma/métodos , Tuberculosis Latente/diagnóstico , Tuberculosis Latente/tratamiento farmacológico , Tuberculosis Latente/epidemiología , Estudios Retrospectivos
10.
Nat Commun ; 13(1): 78, 2022 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-35013257

RESUMEN

T cells recognize mycobacterial glycolipid (mycolipid) antigens presented by CD1b molecules, but the role of CD4 and CD8 co-receptors in mycolipid recognition is unknown. Here we show CD1b-mycolipid tetramers reveal a hierarchy in which circulating T cells expressing CD4 or CD8 co-receptor stain with a higher tetramer mean fluorescence intensity than CD4-CD8- T cells. CD4+ primary T cells transduced with mycolipid-specific T cell receptors bind CD1b-mycolipid tetramer with a higher fluorescence intensity than CD8+ primary T cells. The presence of either CD4 or CD8 also decreases the threshold for interferon-γ secretion. Co-receptor expression increases surface expression of CD3ε, suggesting a mechanism for increased tetramer binding and activation. Targeted transcriptional profiling of mycolipid-specific T cells from individuals with active tuberculosis reveals canonical markers associated with cytotoxicity among CD8+ compared to CD4+ T cells. Thus, expression of co-receptors modulates T cell receptor avidity for mycobacterial lipids, leading to in vivo functional diversity during tuberculosis disease.


Asunto(s)
Antígenos CD1/inmunología , Glucolípidos/inmunología , Mycobacterium tuberculosis/inmunología , Tuberculosis/inmunología , Antígenos CD1/genética , Complejo CD3/genética , Complejo CD3/inmunología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/microbiología , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/microbiología , Citotoxicidad Inmunológica , Expresión Génica , Glucolípidos/metabolismo , Humanos , Interferón gamma/genética , Interferón gamma/inmunología , Activación de Linfocitos , Mycobacterium tuberculosis/crecimiento & desarrollo , Cultivo Primario de Células , Unión Proteica , Multimerización de Proteína , Transducción Genética , Tuberculosis/genética , Tuberculosis/microbiología
11.
PLoS Negl Trop Dis ; 15(12): e0010018, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34914694

RESUMEN

T cell receptors (TCRs) encode the history of antigenic challenge within an individual and have the potential to serve as molecular markers of infection. In addition to peptide antigens bound to highly polymorphic MHC molecules, T cells have also evolved to recognize bacterial lipids when bound to non-polymorphic CD1 molecules. One such subset, germline-encoded, mycolyl lipid-reactive (GEM) T cells, recognizes mycobacterial cell wall lipids and expresses a conserved TCR-ɑ chain that is shared among genetically unrelated individuals. We developed a quantitative PCR assay to determine expression of the GEM TCR-ɑ nucleotide sequence in human tissues and blood. This assay was validated on plasmids and T cell lines. We tested blood samples from South African subjects with or without tuberculin reactivity or with active tuberculosis disease. We were able to detect GEM TCR-ɑ above the limit of detection in 92% of donors but found no difference in GEM TCR-ɑ expression among the three groups after normalizing for total TCR-ɑ expression. In a cohort of leprosy patients from Nepal, we successfully detected GEM TCR-ɑ in 100% of skin biopsies with histologically confirmed tuberculoid and lepromatous leprosy. Thus, GEM T cells constitute part of the T cell repertoire in the skin. However, GEM TCR-ɑ expression was not different between leprosy patients and control subjects after normalization. Further, these results reveal the feasibility of developing a simple, field deployable molecular diagnostic based on mycobacterial lipid antigen-specific TCR sequences that are readily detectable in human tissues and blood independent of genetic background.


Asunto(s)
Lepra/diagnóstico , Lípidos/inmunología , Técnicas de Diagnóstico Molecular/métodos , Mycobacterium/inmunología , Receptores de Antígenos de Linfocitos T alfa-beta/inmunología , Tuberculosis/diagnóstico , Antígenos CD1/genética , Antígenos CD1/inmunología , Pared Celular/genética , Pared Celular/inmunología , Estudios de Cohortes , Humanos , Lepra/sangre , Lepra/inmunología , Lepra/microbiología , Mycobacterium/genética , Mycobacterium/aislamiento & purificación , Nepal , Reacción en Cadena de la Polimerasa , Receptores de Antígenos de Linfocitos T alfa-beta/sangre , Receptores de Antígenos de Linfocitos T alfa-beta/genética , Sudáfrica , Linfocitos T/inmunología , Linfocitos T/microbiología , Tuberculosis/sangre , Tuberculosis/inmunología , Tuberculosis/microbiología
12.
Sci Transl Med ; 13(622): eabe7430, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34851691

RESUMEN

Repeated Plasmodium falciparum infections drive the development of clinical immunity to malaria in humans; however, the immunological mechanisms that underpin this response are only partially understood. We investigated the impact of repeated P. falciparum infections on human γδ T cells in the context of natural infection in Malian children and adults, as well as serial controlled human malaria infection (CHMI) of U.S. adults, some of whom became clinically immune to malaria. In contrast to the predominant Vδ2+ T cell population in malaria-naïve Australian individuals, clonally expanded cytotoxic Vδ1effector T cells were enriched in the γδ T cell compartment of Malian subjects. Malaria-naïve U.S. adults exposed to four sequential CHMIs defined the precise impact of P. falciparum on the γδ T cell repertoire. Specifically, innate-like Vδ2+ T cells exhibited an initial robust polyclonal response to P. falciparum infection that was not sustained with repeated infections, whereas Vδ1+ T cells increased in frequency with repeated infections. Moreover, repeated P. falciparum infection drove waves of clonal selection in the Vδ1+ T cell receptor repertoire that coincided with the differentiation of Vδ1naïve T cells into cytotoxic Vδ1effector T cells. Vδ1+ T cells of malaria-exposed Malian and U.S. individuals were licensed for reactivity to P. falciparum parasites in vitro. Together, our study indicates that repeated P. falciparum infection drives the clonal expansion of an adaptive γδ T cell repertoire and establishes a role for Vδ1+ T cells in the human immune response to malaria.


Asunto(s)
Malaria Falciparum , Plasmodium falciparum , Adulto , Australia , Niño , Humanos , Malaria Falciparum/parasitología , Receptores de Antígenos de Linfocitos T gamma-delta , Linfocitos T
13.
J Acquir Immune Defic Syndr ; 86(2): 157-163, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33074856

RESUMEN

BACKGROUND: Helminth infections can modulate immunity to Mycobacterium tuberculosis (Mtb). However, the effect of helminths, including Schistosoma mansoni (SM), on Mtb infection outcomes is less clear. Furthermore, HIV is a known risk factor for tuberculosis (TB) disease and has been implicated in SM pathogenesis. Therefore, it is important to evaluate whether HIV modifies the association between SM and Mtb infection. SETTING: HIV-infected and HIV-uninfected adults were enrolled in Kisumu County, Kenya, between 2014 and 2017 and categorized into 3 groups based on Mtb infection status: Mtb-uninfected healthy controls, latent TB infection (LTBI), and active TB disease. Participants were subsequently evaluated for infection with SM. METHODS: We used targeted minimum loss estimation and super learning to estimate a covariate-adjusted association between SM and Mtb infection outcomes, defined as the probability of being Mtb-uninfected healthy controls, LTBI, or TB. HIV status was evaluated as an effect modifier of this association. RESULTS: SM was not associated with differences in baseline demographic or clinical features of participants in this study, nor with additional parasitic infections. Covariate-adjusted analyses indicated that infection with SM was associated with a 4% higher estimated proportion of active TB cases in HIV-uninfected individuals and a 14% higher estimated proportion of active TB cases in HIV-infected individuals. There were no differences in estimated proportions of LTBI cases. CONCLUSIONS: We provide evidence that SM infection is associated with a higher probability of active TB disease, particularly in HIV-infected individuals.


Asunto(s)
Infecciones por VIH/complicaciones , Esquistosomiasis mansoni/complicaciones , Tuberculosis/complicaciones , Adulto , Linfocitos T CD4-Positivos , Femenino , Humanos , Kenia , Tuberculosis Latente/complicaciones , Masculino , Mycobacterium tuberculosis , Probabilidad , Adulto Joven
14.
Immunohorizons ; 4(10): 573-584, 2020 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-33008839

RESUMEN

HIV infection is a significant risk factor for reactivation of latent Mycobacterium tuberculosis infection (LTBI) and progression to active tuberculosis disease, yet the mechanisms whereby HIV impairs T cell immunity to M. tuberculosis have not been fully defined. Evaluation of M. tuberculosis-specific CD4 T cells is commonly based on IFN-γ production, yet increasing evidence indicates the immune response to M. tuberculosis is heterogeneous and encompasses IFN-γ-independent responses. We hypothesized that upregulation of surface activation-induced markers (AIM) would facilitate detection of human M. tuberculosis-specific CD4 T cells in a cytokine-independent manner in HIV-infected and HIV-uninfected individuals with LTBI. PBMCs from HIV-infected and HIV-uninfected adults in Kenya were stimulated with CFP-10 and ESAT-6 peptides and evaluated by flow cytometry for upregulation of the activation markers CD25, OX40, CD69, and CD40L. Although M. tuberculosis-specific IFN-γ and IL-2 production was dampened in HIV-infected individuals, M. tuberculosis-specific CD25+OX40+ and CD69+CD40L+ CD4 T cells were detectable in the AIM assay in both HIV-uninfected and HIV-infected individuals with LTBI. Importantly, the frequency of M. tuberculosis-specific AIM+ CD4 T cells was not directly impacted by HIV viral load or CD4 count, thus demonstrating the feasibility of AIM assays for analysis of M. tuberculosis-specific CD4 T cells across a spectrum of HIV infection states. These data indicate that AIM assays enable identification of M. tuberculosis-specific CD4 T cells in a cytokine-independent manner in HIV-uninfected and HIV-infected individuals with LTBI in a high-tuberculosis burden setting, thus facilitating studies to define novel T cell correlates of protection to M. tuberculosis and elucidate mechanisms of HIV-associated dysregulation of antimycobacterial immunity.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Infecciones por VIH/inmunología , VIH-1/inmunología , Tuberculosis Latente/inmunología , Mycobacterium tuberculosis/inmunología , Adulto , Biomarcadores/metabolismo , Linfocitos T CD4-Positivos/microbiología , Linfocitos T CD4-Positivos/virología , Células Cultivadas , Coinfección , Femenino , Citometría de Flujo , Humanos , Interferón gamma/metabolismo , Interleucina-2/metabolismo , Kenia , Masculino , Adulto Joven
15.
PLoS Negl Trop Dis ; 14(10): e0008764, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33044959

RESUMEN

Schistosoma mansoni (SM) is a parasitic helminth that infects over 200 million people and causes severe morbidity. It undergoes a multi-stage life cycle in human hosts and as such stimulates a stage-specific immune response. The human T cell response to SM is complex and varies throughout the life cycle of SM. Relative to the wealth of information regarding the immune response to SM eggs, little is known about the immune response to the adult worm. In addition, while a great deal of research has uncovered mechanisms by which co-infection with helminths modulates immunity to other pathogens, there is a paucity of data on the effect of pathogens on immunity to helminths. As such, we sought to characterize the breadth of the T cell response to SM and determine whether co-infection with Mycobacterium tuberculosis (Mtb) modifies SM-specific T cell responses in a cohort of HIV-uninfected adults in Kisumu, Kenya. SM-infected individuals were categorized into three groups by Mtb infection status: active TB (TB), Interferon-γ Release Assay positive (IGRA+), and Interferon-γ Release Assay negative (IGRA-). U.S. adults that were seronegative for SM antibodies served as naïve controls. We utilized flow cytometry to characterize the T cell repertoire to SM egg and worm antigens. We found that T cells had significantly higher proliferation and cytokine production in response to worm antigen than to egg antigen. The T cell response to SM was dominated by γδ T cells that produced TNFα and IFNγ. Furthermore, we found that in individuals infected with Mtb, γδ T cells proliferated less in response to SM worm antigens and had higher IL-4 production compared to naïve controls. Together these data demonstrate that γδ T cells respond robustly to SM worm antigens and that Mtb infection modifies the γδ T cell response to SM.


Asunto(s)
Mycobacterium tuberculosis/inmunología , Schistosoma mansoni/inmunología , Esquistosomiasis mansoni/inmunología , Linfocitos T/inmunología , Tuberculosis/inmunología , Adulto , Animales , Anticuerpos Antihelmínticos , Coinfección/inmunología , Coinfección/microbiología , Coinfección/parasitología , Femenino , Humanos , Interferón gamma/inmunología , Interleucina-4/inmunología , Kenia , Masculino , Persona de Mediana Edad , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/fisiología , Schistosoma mansoni/genética , Schistosoma mansoni/fisiología , Esquistosomiasis mansoni/parasitología , Tuberculosis/microbiología
16.
Tuberculosis (Edinb) ; 122: 101935, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32501260

RESUMEN

BACKGROUND: Diabetes is associated with increased prevalence of TB infection in the US. We assessed associations between diabetes and interferon-gamma (IFN-γ) TB antigen response among adults with TB infection using US representative data. METHODS: National Health and Nutrition Examination (NHANES) participants >19 years from 2011 to 2012 with positive QuantiFERON®-TB Gold-In-Tube (QFT) results were eligible. Diabetes was defined by combination of self-report and glycated hemoglobin (HbA1c). Quantitative IFN-γ TB antigen was classified as high (≥10 IU/mL), intermediate (1.01-9.99 IU/mL), or low (0.35-1.00 IU/mL). Analyses accounted for NHANES weighted design. RESULTS: Among NHANES participants >19 years, n = 513 had positive QFT (5.9%). Among those with positive QFT, diabetes prevalence was 22.2% and pre-diabetes was 25.9%. Overall, 16.7% of positive QFT participants had high IFN-γ TB antigen levels including 21.7% among those with diabetes, 20.8% among those with pre-diabetes, and 12.6% among euglycemic participants. In adjusted analyses, high IFN-γ TB antigen response was more common among those with pre-diabetes (aOR 1.9, 95%CI 1.0, 3.6) compared to euglycemic participants. CONCLUSION: Higher antigen responses may reflect immunopathy consistent with an exaggerated inflammatory but ineffectual response to TB or a reflection of more Mtb replication in participants with pre-diabetes or diabetes.


Asunto(s)
Ensayos de Liberación de Interferón gamma , Interferón gamma/inmunología , Tuberculosis Latente/inmunología , Mycobacterium tuberculosis/inmunología , Estado Prediabético/inmunología , Adulto , Anciano , Carga Bacteriana , Estudios Transversales , Femenino , Interacciones Huésped-Patógeno , Humanos , Tuberculosis Latente/diagnóstico , Tuberculosis Latente/epidemiología , Tuberculosis Latente/microbiología , Masculino , Persona de Mediana Edad , Mycobacterium tuberculosis/crecimiento & desarrollo , Encuestas Nutricionales , Estado Prediabético/diagnóstico , Estado Prediabético/epidemiología , Valor Predictivo de las Pruebas , Prevalencia , Estados Unidos/epidemiología , Adulto Joven
17.
JCI Insight ; 5(10)2020 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-32369456

RESUMEN

There is limited understanding of the role of host metabolism in the pathophysiology of human tuberculosis (TB). Using high-resolution metabolomics with an unbiased approach to metabolic pathway analysis, we discovered that the tryptophan pathway is highly regulated throughout the spectrum of TB infection and disease. This regulation is characterized by increased catabolism of tryptophan to kynurenine, which was evident not only in active TB disease but also in latent TB infection (LTBI). Further, we found that tryptophan catabolism is reversed with effective treatment of both active TB disease and LTBI in a manner commensurate with bacterial clearance. Persons with active TB and LTBI also exhibited increased expression of indoleamine 2,3-dioxygenase-1 (IDO-1), suggesting IDO-1 mediates observed increases in tryptophan catabolism. Together, these data indicate IDO-1-mediated tryptophan catabolism is highly preserved in the human response to Mycobacterium tuberculosis and could be a target for biomarker development as well as host-directed therapies.


Asunto(s)
Regulación Enzimológica de la Expresión Génica , Indolamina-Pirrol 2,3,-Dioxigenasa/biosíntesis , Tuberculosis Latente/metabolismo , Mycobacterium tuberculosis/metabolismo , Triptófano/metabolismo , Tuberculosis Pulmonar/metabolismo , Adulto , Biomarcadores/metabolismo , Femenino , Humanos , Tuberculosis Latente/patología , Masculino , Tuberculosis Pulmonar/patología
18.
mSphere ; 5(3)2020 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-32434838

RESUMEN

Tuberculosis (TB) represents the largest cause of death in human immunodeficiency virus (HIV)-infected individuals in part due to HIV-related CD4+ T cell loss, rendering patients immunocompromised and susceptible to a loss of Mycobacterium tuberculosis control. However, in light of increasing data pointing to a role for humoral immunity in controlling M. tuberculosis infection, here, we aimed to define whether HIV infection also alters the humoral immune response in subjects with active and latent TB. We show that in the setting of active TB, HIV-positive individuals have significantly lower IgG responses to LAM and Ag85 than HIV-negative individuals. Furthermore, significant isotype/subclass-specific differences were frequently observed, with active TB, HIV-positive individuals demonstrating compromised antigen-specific IgM titers. HIV-infected individuals with active TB also exhibited a significant loss of influenza hemagglutinin- and tetanus toxoid-specific antibody titers at the isotype/subclass level, a symptom of broad humoral immune dysfunction likely precipitated by HIV infection. Finally, we illustrated that despite the influence of HIV infection, differences in M. tuberculosis-specific antibody profiles persist between latent and active TB disease. Taken together, these findings reveal significant HIV-associated disruptions of the humoral immune response in HIV/TB-coinfected individuals.IMPORTANCE TB is the leading cause of death from a single infectious agent globally, followed by HIV. Furthermore, TB represents the leading cause of death among people with HIV. HIV is known to cause severe defects in T cell immunity, rendering HIV/TB-coinfected individuals more susceptible to TB disease progression and complicating accurate TB disease diagnosis. Here, we demonstrate that HIV infection is additionally associated with severely compromised antibody responses, particularly in individuals with active TB. Moreover, despite the influence of HIV infection, antibody profiles still allow accurate classification of individuals with active versus latent TB. These findings reveal novel immunologic challenges associated with HIV/TB coinfection and additionally provide a basis with which to leverage the key antibody features identified to potentially combat TB globally via next-generation therapeutic or diagnostic design.


Asunto(s)
Anticuerpos Antibacterianos/sangre , Coinfección/inmunología , Infecciones por VIH/inmunología , Inmunidad Humoral , Tuberculosis Latente/inmunología , Tuberculosis/inmunología , Adulto , Anticuerpos Antibacterianos/clasificación , Linfocitos T CD4-Positivos/inmunología , Coinfección/microbiología , Coinfección/virología , Femenino , Infecciones por VIH/complicaciones , VIH-1 , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven
19.
Artículo en Inglés | MEDLINE | ID: mdl-32266170

RESUMEN

Mycobacterium tuberculosis (Mtb) is the causative agent of tuberculosis (TB), which leads to an estimated 1. 5 million deaths worldwide each year. Although the immune correlates of protection against Mtb infection and TB disease have not been well-defined, natural killer (NK) cells are increasingly recognized as a key component of the innate immune response to Mtb and as a link between innate and adaptive immunity. In this study, we evaluated NK cell phenotypic and functional profiles in QuantiFERON-TB (QFT)+ and QFT- adults in a TB endemic setting in Kisumu, Kenya, and compared their NK cell responses to those of Mtb-naïve healthy adult controls in the U.S. We used flow cytometry to define the phenotypic profile of NK cells and identified distinct CD56dim NK cell phenotypes that differentiated the Kenyan and U.S. groups. Additionally, among Kenyan participants, NK cells from QFT+ individuals with latent Mtb infection (LTBI) were characterized by significant downregulation of the natural cytotoxicity receptor NKp46 and the inhibitory receptor TIGIT, compared with QFT- individuals. Moreover, the distinct CD56dim phenotypic profiles in Kenyan individuals correlated with dampened NK cell responses to tumor cells and diminished activation, degranulation, and cytokine production following stimulation with Mtb antigens, compared with Mtb-naïve U.S. healthy adult controls. Taken together, these data provide evidence that the phenotypic and functional profiles of NK cells are modified in TB endemic settings and will inform future studies aimed at defining NK cell-mediated immune correlates that may be protective against acquisition of Mtb infection and progression to TB disease.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Adulto , Humanos , Kenia/epidemiología , Células Asesinas Naturales , Fenotipo , Tuberculosis/epidemiología
20.
Front Immunol ; 11: 127, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32117277

RESUMEN

Mycobacterium tuberculosis (Mtb) is a serious public health concern, infecting a quarter of the world and leading to 10 million cases of tuberculosis (TB) disease and 1. 5 million deaths annually. An effective type 1 CD4 T cell (TH1) immune response is necessary to control Mtb infection and defining factors that modulate Mtb-specific TH1 immunity is important to better define immune correlates of protection in Mtb infection. Helminths stimulate type 2 (TH2) immune responses, which antagonize TH1 cells. As such, we sought to evaluate whether co-infection with the parasitic helminth Schistosoma mansoni (SM) modifies CD4 T cell lineage profiles in a cohort of HIV-uninfected adults in Kisumu, Kenya. Individuals were categorized into six groups by Mtb and SM infection status: healthy controls (HC), latent Mtb infection (LTBI) and active tuberculosis (TB), with or without concomitant SM infection. We utilized flow cytometry to evaluate the TH1/TH2 functional and phenotypic lineage state of total CD4 T cells, as well as CD4 T cells specific for the Mtb antigens CFP-10 and ESAT-6. Total CD4 T cell lineage profiles were similar between SM+ and SM- individuals in all Mtb infection groups. Furthermore, in both LTBI and TB groups, SM infection did not impair Mtb-specific TH1 cytokine production. In fact, SM+ LTBI individuals had higher frequencies of IFNγ+ Mtb-specific CD4 T cells than SM- LTBI individuals. Mtb-specific CD4 T cells were characterized by expression of both classical TH1 markers, CXCR3 and T-bet, and TH2 markers, CCR4, and GATA3. The expression of these markers was similar between SM+ and SM- individuals with LTBI. However, SM+ individuals with active TB had significantly higher frequencies of GATA3+ CCR4+ TH1 cytokine+ Mtb-specific CD4 T cells, compared with SM- TB individuals. Together, these data indicate that Mtb-specific TH1 cytokine production capacity is maintained in SM-infected individuals, and that Mtb-specific TH1 cytokine+ CD4 T cells can express both TH1 and TH2 markers. In high pathogen burden settings where co-infection is common and reoccurring, plasticity of antigen-specific CD4 T cell responses may be important in preserving Mtb-specific TH1 responses.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Coinfección/inmunología , Esquistosomiasis mansoni/inmunología , Células TH1/inmunología , Tuberculosis/inmunología , Adulto , Femenino , Humanos , Kenia , Tuberculosis Latente/inmunología , Masculino , Persona de Mediana Edad , Células Th2/inmunología , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA