Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros

Base de datos
Tipo del documento
Intervalo de año de publicación
1.
Nat Cardiovasc Res ; 3(7): 785-798, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39196179

RESUMEN

Vascular remodeling to match arterial diameter to tissue requirements commonly fails in ischemic disease. Endothelial cells sense fluid shear stress (FSS) from blood flow to maintain FSS within a narrow range in healthy vessels. Thus, high FSS induces vessel outward remodeling, but mechanisms are poorly understood. We previously reported that Smad1/5 is maximally activated at physiological FSS. Smad1/5 limits Akt activation, suggesting that inhibiting Smad1/5 may facilitate outward remodeling. Here we report that high FSS suppresses Smad1/5 by elevating KLF2, which induces the bone morphogenetic protein (BMP) pathway inhibitor, BMP-binding endothelial regulator (BMPER), thereby de-inhibiting Akt. In mice, surgically induced high FSS elevated BMPER expression, inactivated Smad1/5 and induced vessel outward remodeling. Endothelial BMPER deletion impaired blood flow recovery and vascular remodeling. Blocking endothelial cell Smad1/5 activation with BMP9/10 blocking antibodies improved vascular remodeling in mouse models of type 1 and type 2 diabetes. Suppression of Smad1/5 is thus a potential therapeutic approach for ischemic disease.


Asunto(s)
Factores de Transcripción de Tipo Kruppel , Proteína Smad1 , Proteína Smad5 , Remodelación Vascular , Animales , Proteína Smad5/metabolismo , Proteína Smad5/genética , Proteína Smad1/metabolismo , Proteína Smad1/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Factores de Transcripción de Tipo Kruppel/genética , Remodelación Vascular/fisiología , Humanos , Estrés Mecánico , Modelos Animales de Enfermedad , Ratones , Ratones Endogámicos C57BL , Masculino , Células Endoteliales/metabolismo , Células Endoteliales de la Vena Umbilical Humana , Ratones Noqueados , Proteínas Proto-Oncogénicas c-akt/metabolismo , Mecanotransducción Celular , Células Cultivadas , Transducción de Señal
2.
Dev Dyn ; 253(1): 28-58, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36795082

RESUMEN

Transcription factors (TFs) play a crucial role in regulating the dynamic and precise patterns of gene expression required for the initial specification of endothelial cells (ECs), and during endothelial growth and differentiation. While sharing many core features, ECs can be highly heterogeneous. Differential gene expression between ECs is essential to pattern the hierarchical vascular network into arteries, veins and capillaries, to drive angiogenic growth of new vessels, and to direct specialization in response to local signals. Unlike many other cell types, ECs have no single master regulator, instead relying on differing combinations of a necessarily limited repertoire of TFs to achieve tight spatial and temporal activation and repression of gene expression. Here, we will discuss the cohort of TFs known to be involved in directing gene expression during different stages of mammalian vasculogenesis and angiogenesis, with a primary focus on development.


Asunto(s)
Células Endoteliales , Factores de Transcripción , Animales , Humanos , Factores de Transcripción/metabolismo , Células Endoteliales/metabolismo , Angiogénesis , Neovascularización Fisiológica/genética , Arterias , Mamíferos/metabolismo
4.
J Am Heart Assoc ; 12(4): e024303, 2023 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-36789992

RESUMEN

Background Proper function of endothelial cells is critical for vascular integrity and organismal survival. Studies over the past 2 decades have identified 2 members of the KLF (Krüppel-like factor) family of proteins, KLF2 and KLF4, as nodal regulators of endothelial function. Strikingly, inducible postnatal deletion of both KLF2 and KLF4 resulted in widespread vascular leak, coagulopathy, and rapid death. Importantly, while transcriptomic studies revealed profound alterations in gene expression, the molecular mechanisms underlying these changes remain poorly understood. Here, we seek to determine mechanisms of KLF2 and KLF4 transcriptional control in multiple vascular beds to further understand their roles as critical endothelial regulators. Methods and Results We integrate chromatin occupancy and transcription studies from multiple transgenic mouse models to demonstrate that KLF2 and KLF4 have overlapping yet distinct binding patterns and transcriptional targets in heart and lung endothelium. Mechanistically, KLFs use open chromatin regions in promoters and enhancers and bind in context-specific patterns that govern transcription in microvasculature. Importantly, this occurs during homeostasis in vivo without additional exogenous stimuli. Conclusions Together, this work provides mechanistic insight behind the well-described transcriptional and functional heterogeneity seen in vascular populations, while also establishing tools into exploring microvascular endothelial dynamics in vivo.


Asunto(s)
Endotelio , Factor 4 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel , Animales , Ratones , Cromatina/metabolismo , Células Endoteliales/metabolismo , Endotelio/metabolismo , Expresión Génica , Factor 4 Similar a Kruppel/genética , Factor 4 Similar a Kruppel/metabolismo , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo
5.
Curr Opin Physiol ; 35: None, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38328689

RESUMEN

The complex and hierarchical vascular network of arteries, veins, and capillaries features considerable endothelial heterogeneity, yet the regulatory pathways directing arteriovenous specification, differentiation, and identity are still not fully understood. Recent advances in analysis of endothelial-specific gene-regulatory elements, single-cell RNA sequencing, and cell lineage tracing have both emphasized the importance of transcriptional regulation in this process and shed considerable light on the mechanism and regulation of specification within the endothelium. In this review, we discuss recent advances in our understanding of how endothelial cells acquire arterial and venous identity and the role different transcription factors play in this process.

7.
Sci Adv ; 8(35): eabo7958, 2022 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-36044575

RESUMEN

Endothelial cell (EC) sensing of disturbed blood flow triggers atherosclerosis, a disease of arteries that causes heart attack and stroke, through poorly defined mechanisms. The Notch pathway plays a central role in blood vessel growth and homeostasis, but its potential role in sensing of disturbed flow has not been previously studied. Here, we show using porcine and murine arteries and cultured human coronary artery EC that disturbed flow activates the JAG1-NOTCH4 signaling pathway. Light-sheet imaging revealed enrichment of JAG1 and NOTCH4 in EC of atherosclerotic plaques, and EC-specific genetic deletion of Jag1 (Jag1ECKO) demonstrated that Jag1 promotes atherosclerosis at sites of disturbed flow. Mechanistically, single-cell RNA sequencing in Jag1ECKO mice demonstrated that Jag1 suppresses subsets of ECs that proliferate and migrate. We conclude that JAG1-NOTCH4 sensing of disturbed flow enhances atherosclerosis susceptibility by regulating EC heterogeneity and that therapeutic targeting of this pathway may treat atherosclerosis.


Asunto(s)
Aterosclerosis , Proteína Jagged-1 , Placa Aterosclerótica , Receptor Notch4 , Animales , Aterosclerosis/genética , Aterosclerosis/metabolismo , Vasos Coronarios/metabolismo , Células Endoteliales/metabolismo , Humanos , Proteína Jagged-1/genética , Proteína Jagged-1/metabolismo , Ratones , Placa Aterosclerótica/metabolismo , Receptor Notch4/genética , Receptor Notch4/metabolismo , Transducción de Señal , Porcinos
8.
Methods Mol Biol ; 2441: 351-368, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35099751

RESUMEN

Identification and analysis of enhancers for endothelial-expressed genes can provide crucial information regarding their upstream transcriptional regulators. However, enhancer identification can be challenging, particularly for people with limited access or experience of bioinformatics, and transgenic analysis of enhancer activity patterns can be prohibitively expensive. Here we describe how to use publicly available datasets displayed on the UCSC Genome Browser to identify putative endothelial enhancers for mammalian genes. Furthermore, we detail how to utilize mosaic Tol2-mediated transgenesis in zebrafish to verify whether a putative enhancer is capable of directing endothelial-specific patterns of gene expression.


Asunto(s)
Elementos de Facilitación Genéticos , Pez Cebra , Animales , Animales Modificados Genéticamente , Endotelio , Técnicas de Transferencia de Gen , Humanos , Mamíferos/genética , Pez Cebra/genética , Pez Cebra/metabolismo
9.
Nat Commun ; 12(1): 3447, 2021 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-34103494

RESUMEN

Congenital heart disease (CHD) is the most common class of human birth defects, with a prevalence of 0.9% of births. However, two-thirds of cases have an unknown cause, and many of these are thought to be caused by in utero exposure to environmental teratogens. Here we identify a potential teratogen causing CHD in mice: maternal iron deficiency (ID). We show that maternal ID in mice causes severe cardiovascular defects in the offspring. These defects likely arise from increased retinoic acid signalling in ID embryos. The defects can be prevented by iron administration in early pregnancy. It has also been proposed that teratogen exposure may potentiate the effects of genetic predisposition to CHD through gene-environment interaction. Here we show that maternal ID increases the severity of heart and craniofacial defects in a mouse model of Down syndrome. It will be important to understand if the effects of maternal ID seen here in mice may have clinical implications for women.


Asunto(s)
Sistema Cardiovascular/embriología , Embrión de Mamíferos/patología , Deficiencias de Hierro , Animales , Aorta Torácica/anomalías , Biomarcadores/metabolismo , Diferenciación Celular , Vasos Coronarios/embriología , Vasos Coronarios/patología , Suplementos Dietéticos , Edema/patología , Embrión de Mamíferos/anomalías , Desarrollo Embrionario , Femenino , Perfilación de la Expresión Génica , Interacción Gen-Ambiente , Proteínas Fluorescentes Verdes/metabolismo , Hierro/metabolismo , Vasos Linfáticos/embriología , Vasos Linfáticos/patología , Ratones Endogámicos C57BL , Miocardio/patología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Penetrancia , Fenotipo , Embarazo , Transducción de Señal , Células Madre/patología , Transgenes , Tretinoina/metabolismo
10.
Cancer Res ; 81(7): 1667-1680, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33558336

RESUMEN

Insights into oncogenesis derived from cancer susceptibility loci (SNP) hold the potential to facilitate better cancer management and treatment through precision oncology. However, therapeutic insights have thus far been limited by our current lack of understanding regarding both interactions of these loci with somatic cancer driver mutations and their influence on tumorigenesis. For example, although both germline and somatic genetic variation to the p53 tumor suppressor pathway are known to promote tumorigenesis, little is known about the extent to which such variants cooperate to alter pathway activity. Here we hypothesize that cancer risk-associated germline variants interact with somatic TP53 mutational status to modify cancer risk, progression, and response to therapy. Focusing on a cancer risk SNP (rs78378222) with a well-documented ability to directly influence p53 activity as well as integration of germline datasets relating to cancer susceptibility with tumor data capturing somatically-acquired genetic variation provided supportive evidence for this hypothesis. Integration of germline and somatic genetic data enabled identification of a novel entry point for therapeutic manipulation of p53 activities. A cluster of cancer risk SNPs resulted in increased expression of prosurvival p53 target gene KITLG and attenuation of p53-mediated responses to genotoxic therapies, which were reversed by pharmacologic inhibition of the prosurvival c-KIT signal. Together, our results offer evidence of how cancer susceptibility SNPs can interact with cancer driver genes to affect cancer progression and identify novel combinatorial therapies. SIGNIFICANCE: These results offer evidence of how cancer susceptibility SNPs can interact with cancer driver genes to affect cancer progression and present novel therapeutic targets.


Asunto(s)
Resistencia a Antineoplásicos/genética , Neoplasias/genética , Neoplasias/patología , Proteína p53 Supresora de Tumor/genética , Animales , Antineoplásicos/uso terapéutico , Biomarcadores Farmacológicos/metabolismo , Carcinogénesis/genética , Estudios de Casos y Controles , Línea Celular Tumoral , Progresión de la Enfermedad , Femenino , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Mutación de Línea Germinal/fisiología , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Mutación Missense , Neoplasias/diagnóstico , Neoplasias/tratamiento farmacológico , Polimorfismo de Nucleótido Simple/fisiología , Pronóstico , Factores de Riesgo , Transducción de Señal/genética , Resultado del Tratamiento
11.
Dev Biol ; 473: 1-14, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33453264

RESUMEN

Correct vascular differentiation requires distinct patterns of gene expression in different subtypes of endothelial cells. Members of the ETS transcription factor family are essential for the transcriptional activation of arterial and angiogenesis-specific gene regulatory elements, leading to the hypothesis that they play lineage-defining roles in arterial and angiogenic differentiation directly downstream of VEGFA signalling. However, an alternative explanation is that ETS binding at enhancers and promoters is a general requirement for activation of many endothelial genes regardless of expression pattern, with subtype-specificity provided by additional factors. Here we use analysis of Ephb4 and Coup-TFII (Nr2f2) vein-specific enhancers to demonstrate that ETS factors are equally essential for vein, arterial and angiogenic-specific enhancer activity patterns. Further, we show that ETS factor binding at these vein-specific enhancers is enriched by VEGFA signalling, similar to that seen at arterial and angiogenic enhancers. However, while arterial and angiogenic enhancers can be activated by VEGFA in vivo, the Ephb4 and Coup-TFII venous enhancers are not, suggesting that the specificity of VEGFA-induced arterial and angiogenic enhancer activity occurs via non-ETS transcription factors. These results support a model in which ETS factors are not the primary regulators of specific patterns of gene expression in different endothelial subtypes.


Asunto(s)
Células Endoteliales/metabolismo , Neovascularización Fisiológica/fisiología , Proteínas Proto-Oncogénicas c-ets/metabolismo , Animales , Arterias/metabolismo , Diferenciación Celular/fisiología , Células Endoteliales/fisiología , Endotelio/metabolismo , Elementos de Facilitación Genéticos/genética , Femenino , Expresión Génica/genética , Regulación del Desarrollo de la Expresión Génica/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas Proto-Oncogénicas c-ets/fisiología , Transducción de Señal , Factores de Transcripción/metabolismo , Activación Transcripcional , Factor A de Crecimiento Endotelial Vascular/metabolismo , Venas/metabolismo , Pez Cebra/embriología , Pez Cebra/metabolismo , Proteínas de Pez Cebra/metabolismo
12.
Front Genet ; 12: 806136, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35126469

RESUMEN

The placental vasculature provides the developing embryo with a circulation to deliver nutrients and dispose of waste products. However, in the mouse, the vascular components of the chorio-allantoic placenta have been largely unexplored due to a lack of well-validated molecular markers. This is required to study how these blood vessels form in development and how they are impacted by embryonic or maternal defects. Here, we employed marker analysis to characterize the arterial/arteriole and venous/venule endothelial cells (ECs) during normal mouse placental development. We reveal that placental ECs are potentially unique compared with their embryonic counterparts. We assessed embryonic markers of arterial ECs, venous ECs, and their capillary counterparts-arteriole and venule ECs. Major findings were that the arterial tree exclusively expressed Dll4, and venous vascular tree could be distinguished from the arterial tree by Endomucin (EMCN) expression levels. The relationship between the placenta and developing heart is particularly interesting. These two organs form at the same stages of embryogenesis and are well known to affect each other's growth trajectories. However, although there are many mouse models of heart defects, these are not routinely assessed for placental defects. Using these new placental vascular markers, we reveal that mouse embryos from one model of heart defects, caused by maternal iron deficiency, also have defects in the formation of the placental arterial, but not the venous, vascular tree. Defects to the embryonic cardiovascular system can therefore have a significant impact on blood flow delivery and expansion of the placental arterial tree.

13.
Nat Rev Cardiol ; 17(12): 790-806, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32587347

RESUMEN

The formation of new blood vessels after myocardial infarction (MI) is essential for the survival of existing and regenerated cardiac tissue. However, the extent of endogenous revascularization after MI is insufficient, and MI can often result in ventricular remodelling, progression to heart failure and premature death. The neutral results of numerous clinical trials that have evaluated the efficacy of angiogenic therapy to revascularize the infarcted heart reflect our poor understanding of the processes required to form a functional coronary vasculature. In this Review, we describe the latest advances in our understanding of the processes involved in coronary vessel formation, with mechanistic insights taken from developmental studies. Coronary vessels originate from multiple cellular sources during development and form through a number of distinct and carefully orchestrated processes. The ectopic reactivation of developmental programmes has been proposed as a new paradigm for regenerative medicine, therefore, a complete understanding of these processes is crucial. Furthermore, knowledge of how these processes differ between the embryonic and adult heart, and how they might be more closely recapitulated after injury are critical for our understanding of regenerative biology, and might facilitate the identification of tractable molecular targets to therapeutically promote neovascularization and regeneration of the infarcted heart.


Asunto(s)
Vasos Coronarios , Infarto del Miocardio , Regeneración , Vasos Coronarios/fisiología , Humanos , Infarto del Miocardio/terapia
14.
Nat Commun ; 10(1): 3276, 2019 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-31332177

RESUMEN

The survival of ischaemic cardiomyocytes after myocardial infarction (MI) depends on the formation of new blood vessels. However, endogenous neovascularization is inefficient and the regulatory pathways directing coronary vessel growth are not well understood. Here we describe three independent regulatory pathways active in coronary vessels during development through analysis of the expression patterns of differentially regulated endothelial enhancers in the heart. The angiogenic VEGFA-MEF2 regulatory pathway is predominantly active in endocardial-derived vessels, whilst SOXF/RBPJ and BMP-SMAD pathways are seen in sinus venosus-derived arterial and venous coronaries, respectively. Although all developmental pathways contribute to post-MI vessel growth in the neonate, none are active during neovascularization after MI in adult hearts. This was particularly notable for the angiogenic VEGFA-MEF2 pathway, otherwise active in adult hearts and during neoangiogenesis in other adult settings. Our results therefore demonstrate a fundamental divergence between the regulation of coronary vessel growth in healthy and ischemic adult hearts.


Asunto(s)
Vasos Coronarios/metabolismo , Corazón/fisiopatología , Infarto del Miocardio/metabolismo , Isquemia Miocárdica/fisiopatología , Transducción de Señal , Animales , Animales Recién Nacidos , Vasos Coronarios/fisiopatología , Humanos , Factores de Transcripción MEF2/metabolismo , Ratones Endogámicos C57BL , Ratones Endogámicos CBA , Ratones Noqueados , Ratones Transgénicos , Infarto del Miocardio/fisiopatología , Isquemia Miocárdica/metabolismo , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Factor A de Crecimiento Endotelial Vascular/metabolismo
15.
Nat Commun ; 10(1): 453, 2019 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-30692543

RESUMEN

Venous endothelial cells are molecularly and functionally distinct from their arterial counterparts. Although veins are often considered the default endothelial state, genetic manipulations can modulate both acquisition and loss of venous fate, suggesting that venous identity is the result of active transcriptional regulation. However, little is known about this process. Here we show that BMP signalling controls venous identity via the ALK3/BMPR1A receptor and SMAD1/SMAD5. Perturbations to TGF-ß and BMP signalling in mice and zebrafish result in aberrant vein formation and loss of expression of the venous-specific gene Ephb4, with no effect on arterial identity. Analysis of a venous endothelium-specific enhancer for Ephb4 shows enriched binding of SMAD1/5 and a requirement for SMAD binding motifs. Further, our results demonstrate that BMP/SMAD-mediated Ephb4 expression requires the venous-enriched BMP type I receptor ALK3/BMPR1A. Together, our analysis demonstrates a requirement for BMP signalling in the establishment of Ephb4 expression and the venous vasculature.


Asunto(s)
Receptores de Proteínas Morfogenéticas Óseas de Tipo 1/genética , Proteínas Morfogenéticas Óseas/genética , Regulación del Desarrollo de la Expresión Génica , Transducción de Señal/genética , Venas/metabolismo , Animales , Animales Modificados Genéticamente , Receptores de Proteínas Morfogenéticas Óseas de Tipo 1/metabolismo , Proteínas Morfogenéticas Óseas/metabolismo , Células Endoteliales/metabolismo , Ratones Noqueados , Ratones Transgénicos , Receptor EphB4/genética , Receptor EphB4/metabolismo , Proteína Smad1/genética , Proteína Smad1/metabolismo , Proteína Smad5/genética , Proteína Smad5/metabolismo , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/metabolismo , Venas/embriología , Pez Cebra/embriología , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
16.
Arterioscler Thromb Vasc Biol ; 38(11): 2550-2561, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30354251

RESUMEN

The field of vascular biology has gained enormous insight from the use of Cre and inducible Cre mouse models to temporally and spatially manipulate gene expression within the endothelium. Models are available to constitutively or inducibly modulate gene expression in all or a specified subset of endothelial cells. However, caution should be applied to both the selection of allele and the analysis of resultant phenotype: many similarly named Cre models have divergent activity patterns while ectopic or inconsistent Cre or inducible Cre expression can dramatically affect results. In an effort to disambiguate previous data and to provide a resource to aid appropriate experimental design, here we summarize what is known about Cre recombinase activity in the most widely used endothelial-specific Cre and Cre/ERT2 mouse models.


Asunto(s)
Células Endoteliales/metabolismo , Marcación de Gen/métodos , Integrasas/genética , Receptores de Estrógenos/genética , Animales , Enfermedades Cardiovasculares/genética , Enfermedades Cardiovasculares/metabolismo , Enfermedades Cardiovasculares/patología , Modelos Animales de Enfermedad , Células Endoteliales/efectos de los fármacos , Células Endoteliales/patología , Regulación de la Expresión Génica/efectos de los fármacos , Genotipo , Integrasas/metabolismo , Ratones Transgénicos , Fenotipo , Dominios y Motivos de Interacción de Proteínas/genética , Receptores de Estrógenos/efectos de los fármacos , Receptores de Estrógenos/metabolismo , Moduladores Selectivos de los Receptores de Estrógeno/farmacología , Tamoxifeno/farmacología
17.
Sci Rep ; 8(1): 950, 2018 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-29343853

RESUMEN

The transcriptional mechanism through which chondrocytes control the spatial and temporal composition of the cartilage tissue has remained largely elusive. The central aim of this study was to identify whether transcriptional enhancers played a role in the organisation of the chondrocytes in cartilaginous tissue. We focused on the Aggrecan gene (Acan) as it is essential for the normal structure and function of cartilage and it is expressed developmentally in different stages of chondrocyte maturation. Using transgenic reporter studies in mice we identified four elements, two of which showed individual chondrocyte developmental stage specificity. In particular, one enhancer (-80) distinguishes itself from the others by being predominantly active in adult cartilage. Furthermore, the -62 element uniquely drove reporter activity in early chondrocytes. The remaining chondrocyte specific enhancers, +28 and -30, showed no preference to chondrocyte type. The transcription factor SOX9 interacted with all the enhancers in vitro and mutation of SOX9 binding sites in one of the enhancers (-30) resulted in a loss of its chondrocyte specificity and ectopic enhancer reporter activity. Thus, the Acan enhancers orchestrate the precise spatiotemporal expression of this gene in cartilage types at different stages of development and adulthood.


Asunto(s)
Agrecanos/genética , Diferenciación Celular/genética , Elementos de Facilitación Genéticos/genética , Animales , Secuencia de Bases , Sitios de Unión/genética , Cartílago/metabolismo , Condrocitos/metabolismo , Condrogénesis/genética , Regulación del Desarrollo de la Expresión Génica/genética , Ratones , Ratones Transgénicos/genética , Células 3T3 NIH , Factor de Transcripción SOX9/genética , Transcripción Genética/genética
18.
J Cell Commun Signal ; 12(1): 231-243, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29256171

RESUMEN

CCN2 is a critical matricellular protein that is expressed in several cells with major implications in physiology and different pathologies. However, the transcriptional regulation of this gene remains obscure. We used the Encyclopaedia of DNA Elements browser (ENCODE) to visualise the region spanning from 300 kb upstream to the CCN2 start site in silico in order to identify enhancer regions that regulate transcription of this gene. Selection was based on three criteria associated with enhancer regions: 1) H3K4me1 and H3K27ac histone modifications, 2) DNase I hypersensitivity of chromatin and 3) inter-species conservation. Reporter constructs were created with sequences spanning each of the regions of interest placed upstream of an Hsp68 silent proximal promoter sequence in order to drive the expression of ß-galactosidase transgene. Each of these constructs was subsequently used to create transgenic mice in which reporter gene production was assessed at the E15.5 developmental stage. Four functional enhancers were identified, with each driving distinct, tissue-specific patterns of transgene expression. An enhancer located -100 kb from the CCN2 transcription start site facilitated expression within vascular tissue. An enhancer -135 kb upstream of CCN2 drove expression within the articular chondrocytes of synovial joints. The other two enhancers, located at -198 kb and -229 kb, mediated transgene expression within dermal fibroblasts, however the most prevalent activity was found within hypertrophic chondrocytes and periosteal tissue, respectively. These findings suggest that the global expression of CCN2 during development results from the activity of several tissue-specific enhancer regions in addition to proximal regulatory elements that have previously been demonstrated to drive transcription of the gene during development.

20.
Development ; 144(14): 2629-2639, 2017 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-28619820

RESUMEN

Arterial specification and differentiation are influenced by a number of regulatory pathways. While it is known that the Vegfa-Notch cascade plays a central role, the transcriptional hierarchy controlling arterial specification has not been fully delineated. To elucidate the direct transcriptional regulators of Notch receptor expression in arterial endothelial cells, we used histone signatures, DNaseI hypersensitivity and ChIP-seq data to identify enhancers for the human NOTCH1 and zebrafish notch1b genes. These enhancers were able to direct arterial endothelial cell-restricted expression in transgenic models. Genetic disruption of SoxF binding sites established a clear requirement for members of this group of transcription factors (SOX7, SOX17 and SOX18) to drive the activity of these enhancers in vivo Endogenous deletion of the notch1b enhancer led to a significant loss of arterial connections to the dorsal aorta in Notch pathway-deficient zebrafish. Loss of SoxF function revealed that these factors are necessary for NOTCH1 and notch1b enhancer activity and for correct endogenous transcription of these genes. These findings position SoxF transcription factors directly upstream of Notch receptor expression during the acquisition of arterial identity in vertebrates.


Asunto(s)
Arterias/embriología , Arterias/metabolismo , Receptor Notch1/genética , Receptor Notch1/metabolismo , Factores de Transcripción SOXF/genética , Factores de Transcripción SOXF/metabolismo , Secuencia de Aminoácidos , Animales , Animales Modificados Genéticamente , Malformaciones Arteriovenosas/embriología , Malformaciones Arteriovenosas/genética , Malformaciones Arteriovenosas/metabolismo , Elementos de Facilitación Genéticos , Femenino , Regulación del Desarrollo de la Expresión Génica , Células Endoteliales de la Vena Umbilical Humana , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Embarazo , Receptor Notch1/deficiencia , Factores de Transcripción SOXF/deficiencia , Homología de Secuencia de Aminoácido , Transducción de Señal , Pez Cebra , Proteínas de Pez Cebra/deficiencia , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA