Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 296
Filtrar
Más filtros

Base de datos
Tipo del documento
Intervalo de año de publicación
1.
Food Chem ; 460(Pt 2): 140733, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39111138

RESUMEN

Celery is a food allergen that must be included in the ingredient list of commercial food products in the European Union. This is a challenge for the food industry because of potential cross-contamination and undeclared ingredients because of their low concentrations. So, the food industry requires expedited high-performance analytical methods. The development, validation and application of a magnetic nanomaterial-based voltammetric immunosensor is reported to quantify a major celery allergen (Api g 1), achieving a low limit of detection (32 pg·mL-1, in a 40-µL sample). The applicability of the biosensor was evaluated by analysing twenty food products and the lowest Api g 1 content (1.1 ± 0.9 mg·kg-1) was quantified in a cooked sample. The selectivity of the method and the interference of similar fresh products (e.g., parsley, basil) were evaluated. This portable and easy-to-use biosensor can be a fit-for-purpose solution to tackle a major problem for the food industry.

2.
J Xenobiot ; 14(3): 873-892, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-39051344

RESUMEN

Pharmaceuticals in the environment are a global concern, with studies in all continents highlighting their widespread occurrence and potential ecological impacts, revealing their presence, fate, and associated risks in aquatic ecosystems. Despite typically occurring at low concentrations (ranging from ng/L to µg/L), advancements in analytical methods and more sensitive equipment have enabled the detection of a higher number of pharmaceuticals. In this study, surface and wastewater samples were extracted using solid phase extraction and analyzed using ultra-high-performance liquid chromatography with tandem mass spectrometry. Among the therapeutic classes investigated, nonsteroidal anti-inflammatory drugs/analgesics, antibiotics, and psychiatric drugs showed a higher number of detected pharmaceuticals. Concentrations ranged from below method detection limit (

3.
Foods ; 13(12)2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38928737

RESUMEN

Hydroalcoholic extracts from Malbec and Torrontés wine pomaces (Vitis vinifera L.) originating from the high-altitude vineyards of Argentina's Calchaquí Valleys were characterized. Total phenolics, hydroxycinnamic acids, orthodiphenols, anthocyanins, non-flavonoid phenolics, total flavonoids, flavones/flavonols, flavanones/dihydroflavonols, and tannins were quantified through spectrophotometric methods, with the Malbec extract exhibiting higher concentrations in most of phytochemical groups when compared to Torrontés. HPLC-DAD identified more than 30 phenolic compounds in both extracts. Malbec displayed superior antiradical activity (ABTS cation, nitric oxide, and superoxide anion radicals), reduction power (iron, copper, and phosphomolybdenum), hypochlorite scavenging, and iron chelating ability compared to Torrontés. The cytotoxicity assessments revealed that Torrontés affected the viability of HT29-MTX and Caco-2 colon cancer cells by 70% and 50%, respectively, at the highest tested concentration (1 mg/mL). At the same time, both extracts did not demonstrate acute toxicity in Artemia salina or in red blood cell assays at 500 µg/mL. Both extracts inhibited the lipoxygenase enzyme (IC50: 154.7 and 784.7 µg/mL for Malbec and Torrontés), with Malbec also reducing the tyrosinase activity (IC50: 89.9 µg/mL), and neither inhibited the xanthine oxidase. The substantial phenolic content and diverse biological activities in the Calchaquí Valleys' pomaces underline their potentialities to be valorized for pharmaceutical, cosmetic, and food industries.

4.
Toxics ; 12(6)2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38922102

RESUMEN

Firefighters' occupational activity causes cancer, and the characterization of exposure during firefighting activities remains limited. This work characterizes, for the first time, firefighters' exposure to (coarse/fine/ultrafine) particulate matter (PM) bound polycyclic aromatic hydrocarbons (PAHs) and metal(loid)s during prescribed fires, Fire 1 and Fire 2 (210 min). An impactor collected 14 PM fractions, the PM levels were determined by gravimetry, and the PM-bound PAHs and metal(loid)s were determined by chromatographic and spectroscopic methodologies, respectively. Firefighters were exposed to a total PM level of 1408.3 and 342.5 µg/m3 in Fire 1 and Fire 2, respectively; fine/ultrafine PM represented more than 90% of total PM. Total PM-bound PAHs (3260.2 ng/m3 in Fire 1; 412.1 ng/m3 in Fire 2) and metal(loid)s (660.8 ng/m3 versus 262.2 ng/m3), distributed between fine/ultrafine PM, contained 4.57-24.5% and 11.7-12.6% of (possible/probable) carcinogenic PAHs and metal(loid)s, respectively. Firefighters' exposure to PM, PAHs, and metal(loid)s were below available occupational limits. The estimated carcinogenic risks associated with the inhalation of PM-bound PAHs (3.78 × 10-9 - 1.74 × 10-6) and metal(loid)s (1.50 × 10-2 - 2.37 × 10-2) were, respectively, below and 150-237 times higher than the acceptable risk level defined by the USEPA during 210 min of firefighting activity and assuming a 40-year career as a firefighter. Additional studies need to (1) explore exposure to (coarse/fine/ultrafine) PM, (2) assess health risks, (3) identify intervention needs, and (4) support regulatory agencies recommending mitigation procedures to reduce the impact of fire effluents on firefighters.

5.
Sci Total Environ ; 944: 173745, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-38844227

RESUMEN

Microplastics (MPs) pose significant environmental pollution problems owing to their diverse properties such as various shapes, sizes, compositions, surface features, and levels of degradation. Moreover, their interactions with toxic chemicals and aging processes add complexity to environmental research. This study investigated the adsorption of triphenyl phosphate (TPhP) in soil-only, MP-only, and soil-MP simulated environments under different conditions. The experiment involved three phases: initial exposure to a pH of 5.5 under fluorescent light, subsequent introduction of ultraviolet (UV) radiation, and pH adjustment to 4.0 and 7.0, while maintaining UV exposure, each lasting 7 days. The study found that environmental factors affected TPhP sorption capacity, with higher adsorption observed under UV radiation and acidic conditions. In contrast, the MP-only systems showed no clear trend for TPhP adsorption, suggesting kinetic limitations. When MPs were added to the soil, the adsorption dynamics were altered, with varying adsorption capacities observed for different MP polymers under different aging conditions. ATR-FTIR spectroscopy, micro-Raman spectroscopy, and water contact angle measurements suggested potential photooxidation processes and changes in the surface hydrophobicity of the MPs subjected to simulated environmental conditions. This study provides valuable insights into the interplay between soil properties, MP characteristics, and environmental factors in determining TPhP sorption dynamics in soil-MP environments.

6.
Food Res Int ; 188: 114502, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38823845

RESUMEN

Lycium barbarum L. berries have a remarkable chemical composition and extensive biological activities, being a valuable component of health and nutraceutical practices. Nevertheless, a deep insight on the intestinal permeation of the pro-healthy bioactive compounds is urgently needed to predict the real effects on human body. This study attempted, for the first time, to optimize the Ultrasound-Assisted Extraction (UAE) of goji berries using a Response Surface Methodology approach and establish the intestinal permeation of the principal pro-healthy compounds. The optimal extraction conditions were a solid:liquid ratio of 8.75 % for 56.21 min, using an intensity of 59.05 W/m2. The optimal extract displayed a remarkable antioxidant capacity, with LC/DAD-ESI-MS analysis unveiled a diverse phytochemical profile, encompassing different compounds (e.g. glu-lycibarbarspermidine F, 2-glu-kukoamine, rutin, 3,5-dicaffeoylquinic acid). The intestinal co-culture model demonstrated that glu-lycibarbarspermidine F (isomer 2) (73.70 %), 3,5-dicaffeoylquinic acid (52.66 %), and isorhamnetin-3-O-rutinoside (49.31 %) traversed the intestinal cell layer, exerting beneficial health-promoting effects.


Asunto(s)
Antioxidantes , Frutas , Lycium , Extractos Vegetales , Lycium/química , Frutas/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Antioxidantes/farmacología , Antioxidantes/aislamiento & purificación , Humanos , Permeabilidad , Ondas Ultrasónicas , Fitoquímicos/aislamiento & purificación , Mucosa Intestinal/metabolismo , Células CACO-2 , Absorción Intestinal , Rutina/aislamiento & purificación , Ultrasonido/métodos , Funcion de la Barrera Intestinal
7.
Foods ; 13(8)2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38672892

RESUMEN

Disphyma crassifolium, commonly known as sea fingers, is a halophyte plant recently introduced in gourmet cuisine. The present study aims to extract the bioactive compounds of D. crassifolium using ultrasound-assisted extraction and employing green solvents (water and ethanol). The antioxidant/antiradical activities, scavenging capacity against reactive species, phenolic profile, and intestinal effects were evaluated. The highest total phenolic (53.13 mg of gallic acid equivalent (GAE)/g on dry weight (dw)) and flavonoid contents (18.98 mg of catechin equivalent (CE)/g dw) as well as antioxidant (149.69 µmol of ferrous sulphate equivalent (FSE)/g dw) and antiradical capacities (9.37 mg of ascorbic acid equivalent (AAE)/g dw) were achieved for the alcoholic extract. Moreover, the alcoholic extract exhibited an efficient uptake of HOCl (IC50 = 1.97 µg/mL) and ROO• (0.34 µmol of Trolox equivalent (TE)/mg dw). A total of 34 phenolic compounds were identified in the extracts, with flavonols (isorhamnetin-3-O-rutinoside, quercetin-3-O-galactoside, and myricetin), flavanols (catechin), and phenolic acids (gallic and ellagic acids) being the principal classes. The intestinal cell viability assays attested that the alcoholic extract presented the lowest IC50 values (289.82 and 35.77 µg/mL for HT29-MTX and Caco-2), showing probable anticancer activity. These results emphasize the potential of D. crassifolium as a nutraceutical ingredient.

8.
Mar Drugs ; 22(4)2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38667770

RESUMEN

Shrimp processing generates substantial waste, which is rich in valuable components such as polysaccharides, proteins, carotenoids, and fatty acids. This review provides a comprehensive overview of the valorization of shrimp waste, mainly shrimp shells, focusing on extraction methods, bioactivities, and potential applications of these bioactive compounds. Various extraction techniques, including chemical extraction, microbial fermentation, enzyme-assisted extraction, microwave-assisted extraction, ultrasound-assisted extraction, and pressurized techniques are discussed, highlighting their efficacy in isolating polysaccharides, proteins, carotenoids, and fatty acids from shrimp waste. Additionally, the bioactivities associated with these compounds, such as antioxidant, antimicrobial, anti-inflammatory, and antitumor properties, among others, are elucidated, underscoring their potential in pharmaceutical, nutraceutical, and cosmeceutical applications. Furthermore, the review explores current and potential utilization avenues for these bioactive compounds, emphasizing the importance of sustainable resource management and circular economy principles in maximizing the value of shrimp waste. Overall, this review paper aims to provide insights into the multifaceted aspects of shrimp waste valorization, offering valuable information for researchers, industries, and policymakers interested in sustainable resource utilization and waste-management strategies.


Asunto(s)
Penaeidae , Administración de Residuos , Animales , Antioxidantes/farmacología , Antioxidantes/aislamiento & purificación , Antioxidantes/química , Carotenoides/farmacología , Carotenoides/aislamiento & purificación , Carotenoides/química , Ácidos Grasos/aislamiento & purificación , Ácidos Grasos/química , Ácidos Grasos/farmacología , Penaeidae/química , Polisacáridos/farmacología , Polisacáridos/aislamiento & purificación , Polisacáridos/química , Proteínas/aislamiento & purificación , Administración de Residuos/métodos , Residuos
9.
Int J Mol Sci ; 25(5)2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38473725

RESUMEN

Environmental sustainability is an increasing challenge in the pharmaceutical field, leading to the search for eco-friendly active ingredients. Among natural ingredients, propolis arises as an excellent alternative, being a complex substance with pharmacological properties. This work aims to explore the potential of propolis as a new pharmaceutical ingredient for the replacement of conventional vulvovaginal antifungals. Propolis extracts were obtained by Ultrasound-Assisted Extraction using different solvents (water, water/ethanol (50:50, v/v), and ethanol). Afterwards, the extracts were characterized regarding total phenolic content (TPC), antioxidant/antiradical activities, radical scavenging capacity, antifungal activity against strains of Candida species, and viability effect on two female genital cell lines. The aqueous extract achieved the best TPC result as well as the highest antioxidant/antiradical activities and ability to capture reactive oxygen species. A total of 38 phenolic compounds were identified and quantified by HPLC, among which ferulic acid, phloridzin and myricetin predominated. Regarding the anti-Candida spp. activity, the aqueous and the hydroalcoholic extracts achieved the best outcomes (with MIC values ranging between 128 and 512 µg/mL). The cell viability assays confirmed that the aqueous extract presented mild selectivity, while the hydroalcoholic and alcoholic extracts showed higher toxicities. These results attest that propolis has a deep potential for vulvovaginal candidiasis management, supporting its economic valorization.


Asunto(s)
Candidiasis Vulvovaginal , Própolis , Femenino , Humanos , Própolis/farmacología , Antioxidantes/farmacología , Etanol/farmacología , Fenoles/farmacología , Antifúngicos/farmacología , Candida , Agua/química , Extractos Vegetales/farmacología
10.
Foods ; 13(6)2024 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-38540898

RESUMEN

In recent years, the consumption of dietary supplements has grown worldwide, particularly in developed regions. However, this growing market has also become a prime target for adulteration practices, with some manufacturers illegally adding pharmaceuticals into plant-based food supplements (PFS) to enhance their effects. While extensive research has focused on detecting adulterant drugs in PFS tailored for improving sexual performance, weight loss, and muscle building, less attention has been given to supplements intended for mood enhancement, sleep aid, and cognitive function (nootropics). Nonetheless, recent reports indicate an increasing level of adulteration within this group of PFS. Therefore, this review aims at providing a comprehensive overview on the adulteration of PFS tailored for brain health, with a focus on the analytical techniques utilized for detection while also presenting data on consumption patterns and the prevalence of reported adulterants. Considering that the detection of such fraudulent practices primarily relies on chromatographic techniques coupled with mass spectrometry (MS), the developments in this field comprising either targeted or untargeted analysis of pharmaceutical adulterants are discussed.

11.
Food Chem ; 446: 138889, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38452504

RESUMEN

Seafood product labels with accurate allergen contents can avoid and/or minimize allergic reactions. Therefore, an electrochemical immunosensor for the analysis of ß-parvalbumin (ß-PV, a major fish allergen) was developed. Screen-printed carbon electrodes were nanostructured with reduced graphene oxide and gold nanoparticles. The platform was characterized by scanning electron microscopy and elemental analysis. In a sandwich-type assay (∼75 min), the antigen-antibody interaction was detected by chronoamperometry using horseradish peroxidase and TMB-H2O2. A linear range of 25-3000 ng/mL, a sensitivity of 2.99 µA.mL/ng, and a limit of detection of 9.9 ng/mL (corresponding to 0.40 ng in the analysed aliquot) were obtained. The selectivity and possible interferences were assessed by analysing several other food allergens and a marine toxin. The sensor was applied to the analysis of 17 commercial foods and the effect of culinary processing (e.g., grilled, canned, smoked) on the ß-PV concentration was assessed. Traces of ß-PV were successfully quantified and ELISA was used to assess the results.


Asunto(s)
Técnicas Biosensibles , Grafito , Nanopartículas del Metal , Animales , Grafito/química , Oro/química , Alérgenos/análisis , Técnicas Biosensibles/métodos , Peróxido de Hidrógeno/química , Técnicas Electroquímicas/métodos , Inmunoensayo/métodos , Nanopartículas del Metal/química , Alimentos Marinos/análisis , Límite de Detección
12.
Chemosphere ; 353: 141673, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38462176

RESUMEN

Polycyclic aromatic hydrocarbons (PAHs) are widespread across the environment and humans are unavoidably and constantly exposed to them. As lipophilic contaminants, these substances tend to accumulate in fatty tissues as adipose tissue and exposure to these endocrine disruptors has been associated with severe health hazards including prevalence and incidence of obesity. Previous studies have shown significantly higher concentrations of PAHs in adipose tissue compared to other human samples, such as urine and plasma, which are typically used for PAHs assessment. Therefore, conducting biomonitoring studies in adipose tissue is essential, although such studies are currently limited. In this study, the concentrations of 18 PAHs were measured in subcutaneous (scAT) and visceral adipose tissue (vAT) of 188 Portuguese obese females by high performance liquid chromatography (HPLC). The obtained results were then associated with the patient's data namely: 13 clinical, 4 social, and 42 biochemical parameters. Seventeen PAHs were present, at least, in one sample of both scAT and vAT, most of them with detection frequencies higher than 80%. Indeno [1,2,3-cd]pyrene (InP) was the only PAH never detected. Overall higher concentrations of PAHs were observed in scAT. Median concentrations of ∑PAHs were 32.2 ± 10.0 ng/g in scAT and 24.6 ± 10.0 ng/g in vAT. Thirty-six significant associations (7 with social, 18 with clinical, and 11 with biochemical parameters), including 21 Spearman's correlations were identified (12 positive and 9 negative correlations). Indicating the potential effects of PAHs on various parameters such as obesity evolution, body fat, number of adipocytes, total cholesterol, alkaline phosphatase, macrominerals, uric acid, sedimentation velocity, and luteinizing hormone. This study underscores the significance of biomonitoring PAH levels in adipose tissue and their potential effects on metabolic health. Further research is essential to fully comprehend the metabolic implications of PAHs in the human body and to develop strategies for obesity prevention and treatment.


Asunto(s)
Hidrocarburos Policíclicos Aromáticos , Humanos , Femenino , Hidrocarburos Policíclicos Aromáticos/análisis , Bioacumulación , Tejido Adiposo/química , Obesidad , Hormona Luteinizante , Monitoreo del Ambiente
13.
Talanta ; 272: 125823, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38422908

RESUMEN

A novel electrochemical sensor was developed for the detection of salivary cortisol levels. The sensor employs a combination of a molecularly imprinted polymer (MIP) and gold nanoparticles (AuNPs) that are electrodeposited onto a screen-printed electrode (SPE). The study utilised density functional theory and molecular docking techniques to determine the geometry of molecular orbitals, electrostatic potential energies, and binding energy of cortisol and the polymers. The thin film of cortisol-imprinted polymer on the SPE was created by electro-polymerizing pyrrole and thiophene-3-carboxylic acid on the electrode surface along with cortisol as the template molecule. The MIP film was characterised using scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), and electrochemical techniques. The sensor exhibited a linear response in the concentration range of 0.05 nmol L-1 to 2.5 µmol L-1, with a limit of detection of 0.01 nmol L-1, as determined by differential pulse voltammetry. This method offers a simple yet efficient and sensitive approach to detecting cortisol levels in human saliva samples.


Asunto(s)
Nanopartículas del Metal , Impresión Molecular , Humanos , Polímeros Impresos Molecularmente , Oro/química , Hidrocortisona , Impresión Molecular/métodos , Simulación del Acoplamiento Molecular , Nanopartículas del Metal/química , Polímeros/química , Técnicas Electroquímicas/métodos , Electrodos , Límite de Detección
14.
Sci Total Environ ; 921: 171169, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38402962

RESUMEN

The widespread presence of pharmaceuticals in wastewater effluents after treatment stands as a significant challenge faced in the field of wastewater management and public health. Governments and the scientific community have worked to meet this urgent need for effective solutions. Nevertheless, the development of detection strategies for pharmaceutical monitorization capable of delivering rapid, on-site, and sensitive responses remains an ongoing necessity. In this work, the performance of a previously developed molecularly imprinted polymer (MIP) based electrochemical sensor for detecting atorvastatin (ATV) in wastewater effluents and surface waters is presented. A simple preconcentration method followed by electrochemical measurements by differential pulse voltammetry (DPV) in 0.1 M phosphate buffer (pH = 7), was implemented. The analytical results were validated with those obtained on a set of 16 water samples by ultra-high performance liquid chromatography coupled to tandem mass spectrometry (UHPLC-MS/MS). Additionally, a life cycle assessment (LCA) was conducted to compare the environmental impact of both methodologies. The results obtained demonstrated that ATV detection using MIP-sensor was reliable when compared to the results found by UHPLC-MS/MS presenting a robust linear correlation coefficient of 0.843. The LCA results show that the novel MIP-sensor technique has lower associated environmental impacts than UHPLC-MS/MS, when the current analytical protocol for pharmaceuticals detection is applied. These findings highlight the potential of the developed MIP-sensor as an eco-friendly analytical tool for routine analysis and point-of-care monitoring of ATV in WWTP wastewater and surface water samples.


Asunto(s)
Impresión Molecular , Polímeros Impresos Molecularmente , Animales , Atorvastatina , Aguas Residuales , Espectrometría de Masas en Tándem , Técnicas Electroquímicas/métodos , Impresión Molecular/métodos , Límite de Detección , Preparaciones Farmacéuticas , Estadios del Ciclo de Vida , Agua
15.
Foods ; 13(2)2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38275684

RESUMEN

Blueberry fruits have been widely explored for their rich composition of bioactive compounds with recognized health benefits. In contrast, blueberry pruning waste (BPW), generated during the pruning stages of blueberries, has been typically overlooked, even though it can represent a potential source of natural antioxidants. This study aims to characterize the value-added compounds extracted from BPW using green techniques, namely microwave-assisted and subcritical water extraction. The total phenolic content ranged from 157 ± 5 to 335 ± 12 mg GAE/g dw, while the radical scavenging activity determined by a DPPH assay varied from 223 ± 21 to 453 ± 21 mg Trolox equivalents/g dw. Additionally, to ensure the safe application of BPW and its extracts, a screening of pesticides and several environmental contaminants was conducted. Chlorpyrifos-methyl was quantified at a concentration of 4.27 µg/kg in a Bluecrop variety collected in 2019; however, none of the studied compounds were found in the extracts. Despite the presence of a pesticide, this level was below the maximum residue limits for blueberry crops. The results of this study demonstrated the potential of this agro-industrial residue as a natural source of bioactive compounds with high antioxidant activity for food industry applications.

16.
Environ Sci Pollut Res Int ; 31(2): 3152-3168, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38085484

RESUMEN

The application of sewage sludge (SS) in agriculture, as an alternative to manufactured fertilizers, is current practice worldwide. However, as wastewater is collected from households, industries, and hospitals, the resulting sludge could contaminate land with creeping levels of pharmaceuticals, pesticides, heavy metals, polycyclic aromatic hydrocarbons, and microplastics, among others. Thus, the sustainable management of SS requires the development of selective methods for the identification and quantification of pollutants, preventing ecological and/or health risks. This study presents a thorough evaluation of emerging and priority micropollutants in SS, through the lens of environmental insights, by developing and implementing an integrated analytical approach. A quick, easy, cheap, effective, rugged, and safe (QuEChERS) extraction method, coupled with gas chromatography and liquid chromatography, was optimized for the determination of 42 organic compounds. These include organophosphorus pesticides, organochlorine pesticides, pyrethroid pesticides, organophosphate ester flame retardants, polybrominated diphenyl ethers, polychlorinated biphenyls, and polycyclic aromatic hydrocarbons. The optimization of the dispersive-solid phase for clean-up, combined with the optimization of chromatographic parameters, ensured improved sensitivity. Method validation included assessments for recovery, reproducibility, limit of detection (LOD), and limit of quantification (LOQ). Recoveries ranged from 59.5 to 117%, while LODs ranged from 0.00700 to 0.271 µg g-1. Application of the method to seven SS samples from Portuguese wastewater treatment plants revealed the presence of sixteen compounds, including persistent organic pollutants. The quantification of α-endosulfan, an organochlorine pesticide, was consistently observed in all samples, with concentrations ranging from 0.110 to 0.571 µg g-1. Furthermore, the study encompasses the analysis of agronomic parameters, as well as the mineral and metal content in SS samples. The study demonstrates that the levels of heavy metals comply with legal limits. By conducting a comprehensive investigation into the presence of micropollutants in SS, this study contributes to a deeper understanding of the environmental and sustainable implications associated with SS management.


Asunto(s)
Hidrocarburos Clorados , Metales Pesados , Plaguicidas , Bifenilos Policlorados , Hidrocarburos Policíclicos Aromáticos , Aguas del Alcantarillado/química , Plaguicidas/análisis , Compuestos Organofosforados , Reproducibilidad de los Resultados , Plásticos , Bifenilos Policlorados/análisis , Hidrocarburos Clorados/análisis , Hidrocarburos Policíclicos Aromáticos/análisis
17.
Food Res Int ; 175: 113807, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38129012

RESUMEN

The health benefits of chestnut (Castanea sativa) shells (CSs) have been ascribed to phytochemicals, mainly phenolic compounds. Nevertheless, an exhaustive assessment of their intestinal absorption is vital considering a possible nutraceutical application. This study evaluated the bioactivity of CSs extract prepared by Supercritical Fluid Extraction and untargeted metabolomic profile upon in-vitro intestinal permeation across a Caco-2/HT29-MTX co-culture model. The results demonstrated the neuroprotective, hypoglycemic, and hypolipidemic properties of CSs extract by inhibition of acetylcholinesterase, α-amylase, and lipase activities. The untargeted metabolic profiling by LC-ESI-LTQ-Orbitrap-MS unveiled almost 60 % of lipids and 30 % of phenolic compounds, with 29 metabolic pathways indicated by enrichment analysis. Among phenolics, mostly phenolic acids, flavonoids, and coumarins permeated the intestinal barrier with most metabolites arising from phase I reactions (reduction, hydrolysis, and hydrogenation) and a minor fraction from phase II reactions (methylation). The permeation rates enhanced in the following order: ellagic acid < o-coumaric acid < p-coumaric acid < ferulaldehyde ≤ hydroxyferulic acid ≤ dihydroferulic acid < ferulic acid < trans-caffeic acid < trans-cinnamic acid < dihydrocaffeic acid, with better outcomes for 1000 µg/mL of extract concentration and after 4 h of permeation. Taken together, these findings sustained a considerable in-vitro intestinal absorption of phenolic compounds from CSs extract, enabling them to reach target sites and exert their biological effects.


Asunto(s)
Acetilcolinesterasa , Funcion de la Barrera Intestinal , Humanos , Células CACO-2 , Absorción Intestinal , Intestinos/química , Fenoles/análisis
18.
Pharmaceuticals (Basel) ; 16(12)2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38139848

RESUMEN

This review summarizes the recent findings on the development of different types of single and multitarget nanoparticles for disease detection and drug delivery to the brain, focusing on promising active principles encapsulated and nanoparticle surface modification and functionalization. Functionalized nanoparticles have emerged as promising tools for the diagnosis and treatment of brain disorders, offering a novel approach to addressing complex neurological challenges. They can act as drug delivery vehicles, transporting one or multiple therapeutic agents across the blood-brain barrier and precisely releasing them at the site of action. In diagnostics, functionalized nanoparticles can serve as highly sensitive contrast agents for imaging techniques such as magnetic resonance imaging and computed tomography scans. By attaching targeting ligands to the nanoparticles, they can selectively accumulate in the affected areas of the brain, enhancing the accuracy of disease detection. This enables early diagnosis and monitoring of conditions like Alzheimer's or Parkinson's diseases. While the field is still evolving, functionalized nanoparticles represent a promising path for advancing our ability to diagnose and treat brain disorders with greater precision, reduced invasiveness, and improved therapeutic outcomes.

19.
Molecules ; 28(22)2023 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-38005259

RESUMEN

With the increase in the world population, the overexploitation of the planet's natural resources is becoming a worldwide concern. Changes in the way humankind thinks about production and consumption must be undertaken to protect our planet and our way of living. For this change to occur, sustainable development together with a circular economic approach and responsible consumption are key points. Agriculture activities are responsible for more than 10% of the greenhouse gas emissions; moreover, by 2050, it is expected that food production will increase by 60%. The valorization of food waste is therefore of high importance to decrease the environmental footprint of agricultural activities. Fruits and vegetables are wildly consumed worldwide, and grapes are one of the main producers of greenhouse gases. Grape biomass is rich in bioactive compounds that can be used for the food, pharmaceutical and cosmetic industries, and their extraction from this food residue has been the target of several studies. Among the extraction techniques used for the recovery of bioactive compounds from food waste, subcritical water extraction (SWE) has been the least explored. SWE has several advantages over other extraction techniques such as microwave and ultrasound extraction, allowing high yields with the use of only water as the solvent. Therefore, it can be considered a green extraction method following two of the principles of green chemistry: the use of less hazardous synthesis (principle number 3) and the use of safer solvents and auxiliaries (principle number 5). In addition, two of the green extraction principles for natural products are also followed: the use of alternative solvents or water (principle number 2) and the use of a reduced, robust, controlled and safe unit operation (principle number 5). This review is an overview of the extraction process using the SWE of grape biomass in a perspective of the circular economy through valorization of the bioactive compounds extracted. Future perspectives applied to the SWE are also discussed, as well as its ability to be a green extraction technique.


Asunto(s)
Eliminación de Residuos , Vitis , Vitis/química , Agua , Biomasa , Solventes/química , Frutas
20.
Biology (Basel) ; 12(10)2023 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-37887061

RESUMEN

Cobalt (Co), copper (Cu), manganese (Mn), molybdenum (Mo), and zinc (Zn) are essential trace elements (ETEs) and important cofactors for intermediary metabolism or redox balance. These ETEs are crucial during pregnancy, their role on specific pregnancy outcomes is largely unknown. This prospective study (#NCT04010708) aimed to assess urinary levels of these ETEs in pregnancy and to evaluate their association with pregnancy outcomes. First trimester pregnant women of Porto and Lisbon provided a random spot urine sample, and sociodemographic and lifestyle data. Clinical data were obtained from clinical records. Urinary ETEs were quantified by inductively coupled plasma mass spectrometry (ICP-MS). A total of 635 mother:child pairs were included. Having urinary Zn levels above the 50th percentile (P50) was an independent risk factor for pre-eclampsia (PE) (aOR [95% CI]: 5.350 [1.044-27.423], p = 0.044). Urinary Zn levels above the P50 decreased the risk of small for gestational age (SGA) birth head circumference (aOR [95% CI]: 0.315 [0.113-0.883], p = 0.028), but it increased the risk SGA length (aOR [95% CI]: 2.531 [1.057-6.062], p = 0.037). This study may provide valuable information for public health policies related to prenatal nutrition, while informing future efforts to de-fine urinary reference intervals for ETEs in pregnant women.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA