Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Base de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Sci Rep ; 9(1): 16110, 2019 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-31695073

RESUMEN

We present an approach for fabrication of reproducible, chemically and mechanically robust functionalized layers based on MgF2 thin films on thin glass substrates. These show great advantages for use in super-resolution microscopy as well as for multi-electrode-array fabrication and are especially suited for combination of these techniques. The transparency of the coated substrates with the low refractive index material is adjustable by the layer thickness and can be increased above 92%. Due to the hydrophobic and lipophilic properties of the thin crystalline MgF2 layers, the temporal stable adhesion needed for fixation of thin tissue, e.g. cryogenic brain slices is given. This has been tested using localization-based super-resolution microscopy with currently highest spatial resolution in light microscopy. We demonstrated that direct stochastic optical reconstruction microscopy revealed in reliable imaging of structures of central synapses by use of double immunostaining of post- (homer1 and GluA2) and presynaptic (bassoon) marker structure in a 10 µm brain slice without additional fixing of the slices. Due to the proven additional electrical insulating effect of MgF2 layers, surfaces of multi-electrode-arrays were coated with this material and tested by voltage-current-measurements. MgF2 coated multi-electrode-arrays can be used as a functionalized microscope cover slip for combination with live-cell super-resolution microscopy.

2.
Sci Rep ; 8(1): 11283, 2018 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-30050070

RESUMEN

We report on the fabrication of spherical Au spheres by pulsed laser treatment using a KrF excimer laser (248 nm, 25 ns) under ambient conditions as a fast and high throughput fabrication technique. The presented experiments were realized using initial Au layers of 100 nm thickness deposited on optically transparent and low cost Borofloat glass or single-crystalline SrTiO3 substrates, respectively. High (111)-orientation and smoothness (RMS ≈ 1 nm) are the properties of the deposited Au layers before laser treatment. After laser treatment, spheres with size distribution ranging from hundreds of nanometers up to several micrometers were produced. Single-particle scattering spectra with distinct plasmonic resonance peaks are presented to reveal the critical role of optimal irradiation parameters in the process of laser induced particle self-assembly. The variation of irradiation parameters like fluence and number of laser pulses influences the melting, dewetting and solidification process of the Au layers and thus the formation of extremely well shaped spherical particles. The gold layers on Borofloat glass and SrTiO3 are found to show a slightly different behavior under laser treatment. We also discuss the effect of substrates.

3.
Nanoscale ; 10(21): 9830-9839, 2018 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-29774907

RESUMEN

The optical response of realistic 3D plasmonic substrates composed of randomly shaped particles of different size and interparticle distance distributions in addition to nanometer scale surface roughness is intrinsically challenging to simulate due to computational limitations. Here, we present a Finite Element Method (FEM)-based methodology that bridges in-depth theoretical investigations and experimental optical response of plasmonic substrates composed of such silver nanoparticles. Parametrized scanning electron microscopy (SEM) images of surface enhanced Raman spectroscopy (SERS) active substrate and tip-enhanced Raman spectroscopy (TERS) probes are used to simulate the far-and near-field optical response. Far-field calculations are consistent with experimental dark field spectra and charge distribution images reveal for the first time in arbitrary structures the contributions of interparticle hybridized modes such as sub-radiant and super-radiant modes that also locally organize as basic units for Fano resonances. Near-field simulations expose the spatial position-dependent impact of hybridization on field enhancement. Simulations of representative sections of TERS tips are shown to exhibit the same unexpected coupling modes. Near-field simulations suggest that these modes can contribute up to 50% of the amplitude of the plasmon resonance at the tip apex but, interestingly, have a small effect on its frequency in the visible range. The band position is shown to be extremely sensitive to particle nanoscale roughness, highlighting the necessity to preserve detailed information at both the largest and the smallest scales. To the best of our knowledge, no currently available method enables reaching such a detailed description of large scale realistic 3D plasmonic systems.

4.
Sci Rep ; 7(1): 14955, 2017 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-29097676

RESUMEN

Optoelectronic technology has been increasingly driven towards miniaturization. In this regard, maintaining the optical properties of the bulk materials while reducing their size is a critical need. How thin must the film be to preserve the bulk material´s optical absorbance and reflectance characteristics? This is the central question for our study of the in situ electro-assembly broad band optical absorber films of platinum in non-aqueous solution of PtCl4. By reducing the in situ constructed film to sub-visible-wavelength thicknesses, the measured reflectance in the region from the ultraviolet to the infrared remained close to that exhibited by the micrometre-width films. These platinum black films broadly absorb electromagnetic waves at a sub-incident-wavelength thickness owing to their plasmonically increased absorbance cross-section. Simulation of various incident energy electron trajectories gives insights into the electron depth through the porous platinum black of ρ = 1.6 g/cm3 and previews the optical behaviour close to the atomic thickness.

5.
Sci Rep ; 7(1): 1074, 2017 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-28432325

RESUMEN

We present electrochemical and chemical synthesis of platinum black at room temperature in aqueous and non-aqueous media. X-ray analysis established the purity and crystalline nature. The electron micrographs indicate that the nanostructures consist of platinum crystals that interconnect to form porous assemblies. Additionally, the electron micrographs of the platinum black thin layer, which was electrochemically deposited on different metallic and semiconductive substrates (aluminium, platinum, silver, gold, tin-cooper alloy, indium-tin-oxide, stainless steel, and copper), indicate that the substrate influences its porous features but not its absorbance characteristics. The platinum black exhibited a broad absorbance and low reflectance in the ultraviolet, visible, and infrared regions. These characteristics make this material suitable for use as a high-temperature resistant absorber layer for the fabrication of microelectronics.

6.
Nanoscale ; 9(1): 391-401, 2017 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-27924333

RESUMEN

Recent experiments have evidenced sub-nanometer resolution in plasmonic-enhanced probe spectroscopy. Such a high resolution cannot be simply explained using the commonly considered radii of metallic nanoparticles on plasmonic probes. In this contribution the effects of defects as small as a single atom found on spherical plasmonic particles acting as probing tips are investigated in connection with the spatial resolution provided. The presence of abundant edge and corner sites with atomic scale dimensions in crystalline metallic nanoparticles is evident from transmission electron microscopy (TEM) images. Electrodynamic calculations based on the Finite Element Method (FEM) are implemented to reveal the impact of the presence of such atomic features in probing tips on the lateral spatial resolution and field localization. Our analysis is developed for three different configurations, and under resonant and non-resonant illumination conditions, respectively. Based on this analysis, the limits of field enhancement, lateral resolution and field confinement in plasmon-enhanced spectroscopy and microscopy are inferred, reaching values below 1 nanometer for reasonable atomic sizes.

7.
Sci Rep ; 5: 7899, 2015 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-25600497

RESUMEN

Since ancient times, noble gold has continuously contributed to several aspects of life from medicine to electronics. It perpetually reveals its new features. We report the finding of a unique form of gold, reticular nanostructured gold (RNG), as an aqueous black colloid, for which we present a one-step synthesis. The reticules consist of gold crystals that interconnect to form compact strands. RNG exhibits high conductivity and low reflection, and these features, coupled with the high specific surface area of the material, could prove valuable for applications in electronics and catalysis. Due to high absorption throughout the visible and infrared domain, RNG has the potential to be applied in the construction of sensitive solar cells or as a substrate for Raman spectroscopy.

8.
Opt Express ; 22(21): 25333-46, 2014 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-25401567

RESUMEN

We discuss a fiber-integrated refractive index sensor with strongly improved detection performance. The resonator has been implemented by means of focused-ion beam milling of a step index fiber and shows a sensitivity of about 1.15µm/RIU. Coating the resonator walls led to a strongly improved mirror reflectivity by a factor of about 26. Design rules for device optimization and a detailed mathematical analysis are discussed, revealing that the sensor operates as an optimized Fabry-Perot resonator. We also show that the performance of such kind of Fabry-Perot sensors is, in general, limited by the detection limit function - a quantity depending on the cavitiy's finesse and on the measurement capabilities used.


Asunto(s)
Tecnología de Fibra Óptica/instrumentación , Miniaturización/instrumentación , Fibras Ópticas , Fenómenos Ópticos , Refractometría/instrumentación , Límite de Detección , Microscopía Electrónica de Rastreo , Modelos Teóricos , Relación Señal-Ruido
9.
Appl Opt ; 53(25): 5660-71, 2014 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-25321361

RESUMEN

Utilizing measurements on a lanthano-aluminosilicate core optical fiber, the specific effects of lanthana (La2O3) on the Brillouin characteristics of silica-based oxide glass optical fibers are described. Lanthana is an interesting species to investigate since it possesses a wide transparency window covering the common fiber laser and telecom system wavelengths. As might be expected, it is found that the properties of lanthana are very similar to those of ytterbia (Yb2O3), namely, low acoustic velocity, wide Brillouin spectral width, and a negative photoelastic constant, with the latter two properties affording significant reductions to the Brillouin gain coefficient. However, lanthana possesses thermo-acoustic and strain-acoustic coefficients (acoustic velocity versus temperature or strain, TAC and SAC, respectively) with signs that are opposed to those of ytterbia. The lanthano-aluminosilicate (SAL) fiber utilized in this study is Brillouin-athermal (no dependence of the Brillouin frequency on temperature), but not atensic (is dependent upon the strain), which is believed to be, to the best of our knowledge, the first demonstration of such a glass fiber utilizing a compositional engineering approach.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA