Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Base de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(14)2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39063034

RESUMEN

Duchenne and Becker muscular dystrophies, caused by pathogenic variants in DMD, are the most common inherited neuromuscular conditions in childhood. These diseases follow an X-linked recessive inheritance pattern, and mainly males are affected. The most prevalent pathogenic variants in the DMD gene are copy number variants (CNVs), and most patients achieve their genetic diagnosis through Multiplex Ligation-dependent Probe Amplification (MLPA) or exome sequencing. Here, we investigated a female patient presenting with muscular dystrophy who remained genetically undiagnosed after MLPA and exome sequencing. RNA sequencing (RNAseq) from the patient's muscle biopsy identified an 85% reduction in DMD expression compared to 116 muscle samples included in the cohort. A de novo balanced translocation between chromosome 17 and the X chromosome (t(X;17)(p21.1;q23.2)) disrupting the DMD and BCAS3 genes was identified through trio whole genome sequencing (WGS). The combined analysis of RNAseq and WGS played a crucial role in the detection and characterisation of the disease-causing variant in this patient, who had been undiagnosed for over two decades. This case illustrates the diagnostic odyssey of female DMD patients with complex structural variants that are not detected by current panel or exome sequencing analysis.


Asunto(s)
Cromosomas Humanos X , Distrofina , Genómica , Distrofia Muscular de Duchenne , Translocación Genética , Humanos , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/diagnóstico , Femenino , Distrofina/genética , Cromosomas Humanos X/genética , Genómica/métodos , Variaciones en el Número de Copia de ADN , Secuenciación del Exoma , Transcriptoma/genética , Cromosomas Humanos Par 17/genética
2.
medRxiv ; 2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38746462

RESUMEN

Solve-RD is a pan-European rare disease (RD) research program that aims to identify disease-causing genetic variants in previously undiagnosed RD families. We utilised 10-fold coverage HiFi long-read sequencing (LRS) for detecting causative structural variants (SVs), single nucleotide variants (SNVs), insertion-deletions (InDels), and short tandem repeat (STR) expansions in extensively studied RD families without clear molecular diagnoses. Our cohort includes 293 individuals from 114 genetically undiagnosed RD families selected by European Rare Disease Network (ERN) experts. Of these, 21 families were affected by so-called 'unsolvable' syndromes for which genetic causes remain unknown, and 93 families with at least one individual affected by a rare neurological, neuromuscular, or epilepsy disorder without genetic diagnosis despite extensive prior testing. Clinical interpretation and orthogonal validation of variants in known disease genes yielded thirteen novel genetic diagnoses due to de novo and rare inherited SNVs, InDels, SVs, and STR expansions. In an additional four families, we identified a candidate disease-causing SV affecting several genes including an MCF2 / FGF13 fusion and PSMA3 deletion. However, no common genetic cause was identified in any of the 'unsolvable' syndromes. Taken together, we found (likely) disease-causing genetic variants in 13.0% of previously unsolved families and additional candidate disease-causing SVs in another 4.3% of these families. In conclusion, our results demonstrate the added value of HiFi long-read genome sequencing in undiagnosed rare diseases.

3.
Eur J Hum Genet ; 32(8): 998-1004, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38822122

RESUMEN

Structural variants (SVs), including large deletions, duplications, inversions, translocations, and more complex events have the potential to disrupt gene function resulting in rare disease. Nevertheless, current pipelines and clinical decision support systems for exome sequencing (ES) tend to focus on small alterations such as single nucleotide variants (SNVs) and insertions-deletions shorter than 50 base pairs (indels). Additionally, detection and interpretation of large copy-number variants (CNVs) are frequently performed. However, detection of other types of SVs in ES data is hampered by the difficulty of identifying breakpoints in off-target (intergenic or intronic) regions, which makes robust identification of SVs challenging. In this paper, we demonstrate the utility of SV calling in ES resulting in a diagnostic yield of 0.4% (23 out of 5825 probands) for a large cohort of unsolved patients collected by the Solve-RD consortium. Remarkably, 8 out of 23 pathogenic SV were not found by comprehensive read-depth-based CNV analysis, resulting in a 0.13% increased diagnostic value.


Asunto(s)
Enfermedades Raras , Humanos , Enfermedades Raras/genética , Enfermedades Raras/diagnóstico , Variaciones en el Número de Copia de ADN , Exoma/genética , Secuenciación del Exoma , Pruebas Genéticas/métodos , Pruebas Genéticas/normas , Variación Estructural del Genoma
4.
NPJ Genom Med ; 9(1): 20, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38485733

RESUMEN

In the era of precision medicine, genome sequencing (GS) has become more affordable and the importance of genomics and multi-omics in clinical care is increasingly being recognized. However, how to scale and effectively implement GS on an institutional level remains a challenge for many. Here, we present Genome First and Ge-Med, two clinical implementation studies focused on identifying the key pillars and processes that are required to make routine GS and predictive genomics a reality in the clinical setting. We describe our experience and lessons learned for a variety of topics including test logistics, patient care processes, data reporting, and infrastructure. Our model of providing clinical care and comprehensive genomic analysis from a single source may be used by other centers with a similar structure to facilitate the implementation of omics-based personalized health concepts in medicine.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA