Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Brain Res ; 1842: 149051, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38830564

RESUMEN

BACKGROUND: Perioperative neurocognitive disorders (PND) is a neurological complication in the perioperative period, which may lead to severe poor prognosis. Dexmedetomidine (Dex) is a commonly used sedative in the perioperative period. However, the effect of intraoperative anesthetic Dex on PND remains complicated and confusing. METHODS: PND model was established using aged male mice, treated with Dex, and subjected to behavioral tests. The effect of Dex on pyroptosis was assessed by western blot, enzyme-linked immunosorbent assay and immunofluorescence. In addition, the miRNA expression profile of PND mice was identified by small RNA sequencing and performed PCR to detect miRNAs. Finally, the effect of miRNA on mice neuron pyroptosis was verified in vitro. RESULTS: We found postoperative cognitive was declined in PND mice compared with control group, while preoperative injection of Dex improved short-term working memory and anxious exploration behavior, alleviated the cognitive impairment. Intriguingly, Dex ameliorated hippocampal inflammation and neuron pyroptosis in PND mice as evidenced by the reduced GSDMD, NLRP3, IL-1ß and IL-18. The miRNA expression profile of PND mice hippocampus was disordered, including 5 miRNAs up-regulated and 17 miRNAs down-regulated, compared to the sham group. Dysregulated miRNAs were mainly enriched in biological functions related to neuronal development and signaling pathways related to pyroptosis. MiR-184-3p was the key miRNA, overexpression of miR-184-3p blocked the inhibitory effect of Dex on neuron pyroptosis, which was manifested as increased expression of GSDMD and NLRP3, increased inflammatory factors IL-1ß and IL-18. CONCLUSIONS: This study revealed that miR-184-3p may mediate NLRP3 to prevent the alleviating effect of Dex on PND, which provides a new potential way to improve the therapeutic intervention of PND.

2.
ESC Heart Fail ; 11(2): 1205-1217, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38288506

RESUMEN

AIMS: Acute myocardial infarction (MI) is a significant contributor to death in individuals diagnosed with coronary heart disease on a worldwide level. The specific mechanism by which circRbms1 contributes to the damage caused by myocardial ischaemia-reperfusion (I/R) is not well understood. The primary aim of this study was to examine the role of circRbms1 and its associated mechanisms in the setting of I/R injury. METHODS AND RESULTS: An in vivo MI mice model and an in vitro MI cell model was established. The expression levels were detected using quantitative real-time PCR (qRT-PCR) and western blot. Cellular proliferation, apoptosis, pyroptosis, and autophagy were detected by immunostaining, immunohistochemistry, western blot, and transmission electron microscopy (TEM). Dual-luciferase reporter assay, RNA pull-down assay, and RIP assay were performed to validate the molecular interactions. CircRbms1 was up-regulated in A/R-induced HCMs and acted as a sponge for miR-142-3p, thereby targeting MST1. CircRbms1 could improve stability of MST1 by recruiting IGF2BP2 (all P < 0.05). CircRbms1 knockout reduced cell pyroptosis, improved autophagy and proliferation level in A/R-induced HCMs (all P < 0.05). CircRbms1 knockout alleviated cardiac dysfunction and cell pyroptosis and enhanced autophagy and proliferation in mice through the miR-142-3p/MST1 axis. CONCLUSIONS: CircRbms1 inhibited the miR-142-3p/MST1 axis and played a protective role in myocardial I/R injury. It may provide a new therapeutic target for I/R heart injury.


Asunto(s)
MicroARNs , Isquemia Miocárdica , Daño por Reperfusión Miocárdica , Animales , Ratones , Autofagia/genética , MicroARNs/genética , Daño por Reperfusión Miocárdica/genética , ARN Mensajero
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA