Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 514
Filtrar
Más filtros

Base de datos
Tipo del documento
Intervalo de año de publicación
1.
Bioresour Technol ; 406: 130959, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38876286

RESUMEN

Despite the increased research efforts aimed at understanding iron-based conductive materials (CMs) for facilitating chain elongation (CE) to produce medium chain fatty acids (MCFAs), the impact of these materials on microbial community functions and the adaptation mechanisms to their biotoxicity remain unclear. This study found that the supply of zero-valent iron (ZVI) and magnetite enhanced the MCFAs carbon-flow distribution by 26 % and 52 %, respectively. Metagenomic analysis revealed the upregulation of fatty acid metabolism, pyruvate metabolism and ABC transporters with ZVI and magnetite. The predominant functional microorganisms were Massilibacterium and Tidjanibacter with ZVI, and were Petrimonas and Candidatus_Microthrix with magnetite. Furthermore, it was demonstrated that CE microorganisms respond and adapt to the biotoxicity of iron-based CMs by adjusting Two-component system and Quorum sensing for the first time. In summary, this study provided a new deep-insight on the feedback mechanisms of CE microorganisms on iron-based CMs.

2.
Sci Rep ; 14(1): 14023, 2024 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-38890348

RESUMEN

The mechanism of spinal cord injury (SCI) is highly complex, and an increasing number of studies have indicated the involvement of pyroptosis in the physiological and pathological processes of secondary SCI. However, there is limited bioinformatics research on pyroptosis-related genes (PRGs) in SCI. This study aims to identify and validate differentially expressed PRGs in the GEO database, perform bioinformatics analysis, and construct regulatory networks to explore potential regulatory mechanisms and therapeutic targets for SCI. We obtained high-throughput sequencing datasets of SCI in rats and mice from the GEO database. Differential analysis was conducted using the "limma" package in R to identify differentially expressed genes (DEGs). These genes were then intersected with previously reported PRGs, resulting in a set of PRGs in SCI. GO and KEGG enrichment analyses, as well as correlation analysis, were performed on the PRGs in both rat and mouse models of SCI. Additionally, a protein-protein interaction (PPI) network was constructed using the STRING website to examine the relationships between proteins. Hub genes were identified using Cytoscape software, and the intersection of the top 5 hub genes in rats and mice were selected for subsequent experimentally validated. Furthermore, a competing endogenous RNA (ceRNA) network was constructed to explore potential regulatory mechanisms. The gene expression profiles of GSE93249, GSE133093, GSE138637, GSE174549, GSE45376, GSE171441_3d and GSE171441_35d were selected in this study. We identified 10 and 12 PRGs in rats and mice datasets respectively. Six common DEGs were identified in the intersection of rats and mice PRGs. Enrichment analysis of these DEGs indicated that GO analysis was mainly focused on inflammation-related factors, while KEGG analysis showed that the most genes were enriched on the NOD-like receptor signaling pathway. We constructed a ceRNA regulatory network that consisted of five important PRGs, as well as 24 miRNAs and 34 lncRNAs. This network revealed potential regulatory mechanisms. Additionally, the three hub genes obtained from the intersection were validated in the rat model, showing high expression of PRGs in SCI. Pyroptosis is involved in secondary SCI and may play a significant role in its pathogenesis. The regulatory mechanisms associated with pyroptosis deserve further in-depth research.


Asunto(s)
Biología Computacional , Redes Reguladoras de Genes , Mapas de Interacción de Proteínas , Piroptosis , Traumatismos de la Médula Espinal , Animales , Traumatismos de la Médula Espinal/genética , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/patología , Ratones , Piroptosis/genética , Ratas , Biología Computacional/métodos , Mapas de Interacción de Proteínas/genética , Perfilación de la Expresión Génica
3.
Artículo en Inglés | MEDLINE | ID: mdl-38864771

RESUMEN

Pulmonary hypertension (PH) is an incurable disease characterized by pulmonary vascular remodeling. Endothelial injury and inflammation are the key triggers of the disease initiation. Recent findings suggest that STING (stimulator of interferon genes) activation plays a critical role in the endothelial dysfunction and interferon signaling. Here, we investigated the involvement of STING in the pathogenesis of PH. PH patients and rodent PH model samples, Sugen5416/hypoxia (SuHx) PH model, and pulmonary artery endothelial cells (PAECs) were used to evaluate the hypothesis. We found that the cyclic GMP-AMP (cGAS)-STING signaling pathway was activated in the lung tissues from rodent PH models and PH patients, and in the TNF-α induced PAECs in vitro. Specifically, STING expression was significantly elevated in the endothelial cell in PH disease settings. In SuHx mouse model, genetic knockout or pharmacological inhibition of STING prevented the progression of PH. Functionally, knockdown of STING reduced the proliferation and migration in PAECs. Mechanistically, STING transcriptional regulates its binding partner F2RL3 through STING-NF-κB axis, which activated the interferon signaling and repressed the BMPR2 signaling both in vitro and in vivo. Further analysis revealed that F2RL3 expression was increased in PH settings and identified negative feedback regulation of F2RL3/BMPR2 signaling. Accordingly, a positive correlation of expression levels between STING and F2RL3/interferon-stimulated genes (ISGs) was observed in vivo. Our findings suggest that STING activation in PAECs plays a critical role in the pathobiology of PH. Targeting STING may be a promising therapeutic strategy for preventing the development of PH.

5.
Intractable Rare Dis Res ; 13(2): 104-109, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38836175

RESUMEN

Gene therapy for monogenic auditory neuropathy (AN) has successfully improved hearing function in target gene-deficient mice. Accurate genetic diagnosis can not only clarify the etiology but also accurately locate the lesion site, providing a basis for gene therapy and guiding patient intervention and management strategies. In this study, we collected data from a family with a pair of sisters with prelingual deafness. According to their auditory tests, subject Ⅱ-1 was diagnosed with profound sensorineural hearing loss (SNHL), Ⅱ-2 was diagnosed with AN, Ⅰ-1 was diagnosed with high-frequency SNHL, and Ⅰ-2 had normal hearing. Using whole-exome sequencing (WES), one nonsense mutation, c.4030C>T (p.R1344X), and one missense mutation, c.5000C>A (p.A1667D), in the OTOF (NM_001287489.1) gene were identified in the two siblings. Their parents were heterozygous carriers of c.5000C>A (father) and c.4030C>T (mother). We hypothesized that c.5000C>A is a novel pathogenic mutation. Thus, subject Ⅱ-1 should also be diagnosed with AN caused by OTOF mutations. These findings not only expand the OTOF gene mutation spectrum for AN but also indicate that WES is an effective approach for accurately diagnosing AN.

6.
Int Immunopharmacol ; 137: 112519, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38901241

RESUMEN

PURPOSE: Patients with nanophthalmos might be prone to developing intraocular inflammation following an acute glaucoma attack. Here, we aimed to investigate the role of MYRF in intraocular inflammation by modeling the mutation in mice. METHODS: Nanophthalmos frameshift mutation of Myrf was introduced into the mouse genome with the CRISPR-Cas9 system. Signaling pathways in eye tissues were delineated using RNA sequencing and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. Intraocular inflammation was induced by a lipopolysaccharide (LPS) intravitreal injection. Dexamethasone (DEX) was administered systemically and locally a week before the LPS injection. The anterior segment clinical scores of the mice were examined 24 h after the LPS injection. Infiltrating inflammatory cells were evaluated with histopathology and immunofluorescence. The mRNA levels of inflammatory cytokines were quantified with reverse transcription-quantitative PCR (RT-qPCR) and the corresponding protein concentrations using enzyme-linked immunosorbent assay (ELISA). RESULTS: Many inflammation-associated signaling pathways were enriched in Myrf mut/+ mice ocular tissues. Clinical scores of Myrf mut/+ mice were significantly higher than those of Myrf +/+ mice 24 h after LPS administration. Histological examination demonstrated high inflammatory cell infiltration in the anterior and vitreous chambers in Myrf mut/+ mice, with numerous CD45+ and CD11b+ inflammatory cells. Moreover, enhanced expression of inflammatory cytokines MCP-1, TGF-ß, and IL-1ß in eyes and aqueous humor of Myrf mut/+ mice was detected. Remarkably, pretreating Myrf mut/+ mice with DEX relieved the intraocular inflammation. CONCLUSION: Nanophthalmos-associated MYRF mutation renders mouse eyes more susceptible to inflammation. Dexamethasone treatment ameliorates the inflammatory response.

7.
Water Res ; 259: 121844, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38824795

RESUMEN

Trace iron ions (Fe(III)) are commonly found in water and wastewater, where free chlorine is very likely to coexist with Fe(III) affecting the disinfectant's stability and N-DBPs' fate during UV/chlorine disinfection, and yet current understanding of these mechanisms is limited. This study investigates the effects of Fe(III) on the formation and toxicity alteration of halonitromethanes (HNMs), dichloroacetonitrile (DCAN), and dichloroacetamide (DCAcAm) from polyethyleneimine (PEI) during UV/chlorine disinfection. Results reveal that the maxima concentrations of HNMs, DCAN, and DCAcAm during UV/chlorine disinfection with additional Fe(III) were 1.39, 1.38, and 1.29 times higher than those without additional Fe(III), instead of being similar to those of Fe(III) inhibited the formation of HNMs, DCAN and DCAcAm during chlorination disinfection. Meanwhile, higher Fe(III) concentration, acidic pH, and higher chlorine dose were more favorable for forming HNMs, DCAN, and DCAcAm during UV/chlorine disinfection, which were highly dependent on the involvement of HO· and Cl·. Fe(III) in the aquatic environment partially hydrolyzed to the photoactive Fe(III)­hydroxyl complexes Fe(OH)2+ and [Fe(H2O)6]3+, which undergone UV photoactivation and coupling reactions with HOCl to achieve effective Fe(III)/Fe(II) interconversion, a process that facilitated the sustainable production of HO·. Extensive product analysis and comparison verified that the HO· production enhanced by the Fe(III)/Fe(II) internal cycle played a primary role in increasing HNMs, DCAN, and DCAcAm productions during UV/chlorine disinfection. Note that the incorporation of Fe(III) increased the cytotoxicity and genotoxicity of HNMs, DCAN, and DCAcAm formed during UV/chlorine disinfection, and yet Fe(III) did not have a significant effect on the acute toxicity of water samples before, during, and after UV/chlorine disinfection. The new findings broaden the knowledge of Fe(III) affecting HNMs, DCAN, and DCAcAm formation and toxicity alteration during UV/chlorine disinfection.


Asunto(s)
Desinfección , Desinfección/métodos , Rayos Ultravioleta , Cloro/química , Polietileneimina/química , Acetonitrilos/química , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/toxicidad , Hierro/química , Purificación del Agua/métodos , Acetamidas/química , Acetamidas/toxicidad , Desinfectantes/química
8.
J Chem Phys ; 160(21)2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38828804

RESUMEN

Fullerene-chromophore dyads have attracted a great deal of research interest because these complexes can be potentially designed as nanoscale artificial photosynthetic centers, in which the chromophore and fullerene function as the electron donor and acceptor, respectively. The basic operation of this dyad-type artificial reaction center is photoinduced electron transfer from the donor to the acceptor. The fullerene and chromophore are usually covalently linked so that sufficient electronic coupling between these two moieties can facilitate the electron transfer. However, other deactivation pathways for the chromophore excited state, such as energy transfer to the fullerene, may reduce the quantum yield of the photoinduced electron transfer. Here, a series of C60-perylene dyads is exploited to interrogate the effect of the linkage on deactivation mechanisms of the chromophore excited state. For the C60-perylene dyads with a single or double bond bridge, we find that the decay of the singlet state of the chromophore is dominated by the electron transfer, and the corresponding time constant is determined to be 45 ps. On the other hand, for the dyad with a triple bond bridge, the singlet state of the chromophore is quickly quenched through energy transfer to fullerene, and the time constant is as short as 7.9 ps. Our finding suggests that the bond order of the bridge in the fullerene-chromophore dyads can be utilized to control the deactivation pathways of the excited state.

10.
J Environ Manage ; 359: 121034, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38703649

RESUMEN

Frequent algal blooms cause algal cells and their algal organic matter (AOM) to become critical precursors of disinfection by-products (DBPs) during water treatment. The presence of bromide ion (Br-) in water has been demonstrated to affect the formation laws and species distribution of DBPs. However, few researchers have addressed the formation and toxicity alteration of halonitromethanes (HNMs) from algae during disinfection in the presence of Br-. Therefore, in this work, Chlorella vulgaris was selected as a representative algal precursor to investigate the formation and toxicity alteration of HNMs during UV/chloramination involving Br-. The results showed that the formation concentration of HNMs increased and then decreased during UV/chloramination. The intracellular organic matter of Chlorella vulgaris was more susceptible to form HNMs than the extracellular organic matter. When the Br-: Cl2 mass ratio was raised from 0.004 to 0.08, the peak of HNMs total concentration increased 33.99%, and the cytotoxicity index and genotoxicity index of HNMs increased 67.94% and 22.80%. Besides, the formation concentration and toxicity of HNMs increased with increasing Chlorella vulgaris concentration but decreased with increasing solution pH. Possible formation pathways of HNMs from Chlorella vulgaris during UV/chloramination involving Br- were proposed based on the alteration of nitrogen species and fluorescence spectrum analysis. Furthermore, the formation laws of HNMs from Chlorella vulgaris in real water samples were similar to those in deionized water samples. This study contributes to a better comprehension of HNMs formation from Chlorella vulgaris and provides valuable information for water managers to reduce hazards associated with the formation of HNMs.


Asunto(s)
Bromuros , Chlorella vulgaris , Chlorella vulgaris/efectos de los fármacos , Bromuros/química , Bromuros/toxicidad , Desinfección , Purificación del Agua , Rayos Ultravioleta
11.
J Electrocardiol ; 84: 137-144, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38696980

RESUMEN

BACKGROUND: Metabolic syndrome (MetS) is associated with increased rates of cardiovascular disease and mortality and is linked to abnormal electrocardiogram (ECG) parameters. We aimed to explore the relationships and interactions among MetS and its components, abnormal P-wave axis (aPWA), and mortality rates. METHODS: We analyzed data from 7526 adult participants with sinus rhythm recruited from the National Health and Nutrition Examination Survey III. MetS was classified based on the NCEP ATP III-2005 definition. aPWA included all P-wave axis outside 0-75°. The National Death Index was utilized to identify survival status. Hazard ratios (HRs) and 95% confidence intervals (CIs) categorized by aPWA, MetS, and their components were analyzed using Cox proportional hazards models to investigate all-cause and cardiovascular mortalities. RESULTS: Within a median follow-up period of 20.76 years, 4686 deaths were recorded, of which 1414 were attributable to cardiovascular disease. Participants with both MetS and aPWA had higher all-cause (HR: 1.45, 95% CI: 1.29-1.64, interaction P = 0.043) and cardiovascular (HR: 1.36, 95% CI: 1.02-1.79, interaction P-value = 0.058) mortality rates than participants without MetS and with a normal P-wave axis. Participants with the greatest number of MetS components and aPWA had a higher risk of all-cause mortality (HR: 1.70, 95% CI: 1.13-2.55, P = 0.011). CONCLUSIONS: Individuals with both aPWA and MetS have a higher risk of mortality, and those with a greater number of MetS components and aPWA have a higher risk of all-cause mortality. These findings highlight the significance of integrating ECG characteristics with metabolic health status in clinical assessment.


Asunto(s)
Enfermedades Cardiovasculares , Electrocardiografía , Síndrome Metabólico , Encuestas Nutricionales , Humanos , Síndrome Metabólico/mortalidad , Masculino , Femenino , Estados Unidos/epidemiología , Persona de Mediana Edad , Enfermedades Cardiovasculares/mortalidad , Adulto , Factores de Riesgo , Causas de Muerte , Tasa de Supervivencia
12.
J Hazard Mater ; 472: 134544, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38733788

RESUMEN

Nitrophenol compounds (NCs) have high formation potentials of disinfection byproducts (DBPs) in water disinfection processes, however, the reaction mechanisms of DBPs formed from different NCs are not elucidated clearly. Herein, nitrobenzene, phenol, and six representative NCs were used to explore the formation mechanisms of chlorinated DBPs (Cl-DBPs) during chlor(am)ination and UV/post-chlor(am)ination. Consequently, the coexistence of nitro and hydroxy groups in NCs facilitated the electrophilic substitution to produce intermediates of Cl-DBPs, and the different positions of nitro and hydroxy groups also induced different yields and formation mechanisms of Cl-DBPs during the chlorination and UV/post-chlorination processes. Besides, the amino, chlorine, and methyl groups significantly influenced the formation mechanisms of Cl-DBPs during the chlorination and UV/post-chlorination processes. Furthermore, the total Cl-DBPs yields from the six NCs followed a decreasing order of 2-chloro-3-nitrophenol, 3-nitrophenol, 2-methyl-3-nitrophenol, 2-amino-4-nitrophenol, 2-nitrophenol, and 4-nitrophenol during chlorination and UV/post-chlorination. However, the total Cl-DBPs yields from the six NCs during chloramination and UV/post-chloramination followed a quite different order, which might be caused by additional reaction mechanisms, e.g., nucleophilic substitution or addition might occur to NCs in the presence of monochloramine (NH2Cl). This work can offer deep insights into the reaction mechanisms of Cl-DBPs from NCs during the chlor(am)ination and UV/post-chlor(am)ination processes.

13.
Water Res ; 257: 121674, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38678835

RESUMEN

The occurrence of seasonal algae blooms represents a huge dilemma for water resource management and has garnered widespread attention. Therefore, finding methods to control algae pollution and improve water quality is urgently needed. Moderate oxidation has emerged as a feasible way of algae-laden water treatment and is an economical and prospective strategy for controlling algae and endogenous and exogenous pollutants. Despite this, a comprehensive understanding of algae-laden water treatment by moderate oxidation, particularly principles and summary of advanced strategies, as well as challenges in moderate oxidation application, is still lacking. This review outlines the properties and characterization of algae-laden water, which serve as a prerequisite for assessing the treatment efficiency of moderate oxidation. Biomass, cell viability, and organic matter are key components to assessing moderate oxidation performance. More importantly, the recent advancements in employing moderate oxidation as a treatment or pretreatment procedure were examined, and the suitability of different techniques was evaluated. Generally, moderate oxidation is more promising for improving the solid-liquid separation process by the reduction of cell surface charge (stability) and removal/degradation of the soluble algae secretions. Furthermore, this review presents an outlook on future research directions aimed at overcoming the challenges encountered by existing moderate oxidation technologies. This comprehensive examination aims to provide new and valuable insights into the moderate oxidation process.


Asunto(s)
Oxidación-Reducción , Purificación del Agua , Purificación del Agua/métodos , Biomasa , Eutrofización , Agua/química
14.
Eur J Med Res ; 29(1): 256, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38689332

RESUMEN

BACKGROUND: Traumatic brain injury (TBI) has been a worldwide problem for neurosurgeons. Patients with severe TBI may undergo craniotomy. These patients often require sedation after craniotomy. Dexmedetomidine (DEX) has been used in patients receiving anesthesia and in intensive care units. Not much is known about the postoperative effect of DEX in patients with severe TBIs undergoing craniotomy. The purpose of this study was to explore the effects of postoperative DEX administration on severe TBI patients who underwent craniotomy. METHODS: Patients who underwent craniectomy for severe TBI at our hospital between January 2019 and February 2022 were included in this study. The patients were admitted to the intensive care unit (ICU) after surgery to receive sedative medication. The patients were then divided into DEX and control groups. We analyzed the sedation, hemodynamics, and other conditions of the patients (hypoxemia, duration of ventilation during endotracheal intubation, whether tracheotomy was performed, and the duration in the ICU) during their ICU stay. Other conditions, such as delirium after the patients were transferred to the general ward, were also analyzed. RESULTS: A total of 122 patients were included in this study. Among them, 53 patients received DEX, and the remaining 69 did not. The incidence of delirium in the general ward in the DEX group was significantly lower than that in the control group (P < 0.05). The incidence of bradycardia in the control group was significantly lower than that in the DEX group (P < 0.05). Other data from the DEX group and the control group (hypotension, hypoxemia, etc.) were not significantly different (P > 0.05). CONCLUSION: The use of DEX in the ICU can effectively reduce the incidence of delirium in patients who return to the general ward after craniotomy. DEX had no adverse effect on the prognosis of patients other than causing bradycardia.


Asunto(s)
Craneotomía , Bradicardia/epidemiología , Resultado del Tratamiento , Persona de Mediana Edad , Anciano
15.
Biosci Trends ; 18(2): 165-175, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38583982

RESUMEN

Hearing loss is the third most prevalent physical condition affecting communication, well-being, and healthcare costs. Sensorineural hearing loss often occurs first in the high-frequency region (basal turn), then towards the low-frequency region (apical turn). However, the mechanism is still unclear. Supporting cells play a critical role in the maintenance of normal cochlear function. The function and supporting capacity of these cells may be different from different frequency regions. Hensen's cells are one of the unique supporting cell types characterized by lipid droplets (LDs) in the cytoplasm. Here, we investigated the morphological and gene expression differences of Hensen's cells along the cochlear axis. We observed a gradient change in the morphological characteristics of Hensen's cells along the cochlear tonotopic axis, with larger and more abundant LDs observed in apical Hensen's cells. Smart-seq2 RNA-seq revealed differentially expressed genes (DEGs) between apical and basal Hensen's cells that clustered in several pathways, including unsaturated fatty acid biosynthesis, cholesterol metabolism, and fatty acid catabolism, which are associated with different energy storage capacities and metabolic potential. These findings suggest potential differences in lipid metabolism and oxidative energy supply between apical and basal Hensen's cells, which is consistent with the morphological differences of Hensen's cells. We also found differential expression patterns of candidate genes associated with hereditary hearing loss (HHL), noise-induced hearing loss (NIHL), and age-related hearing loss (ARHL). These findings indicate functional heterogeneity of SCs along the cochlear axis, contribute to our understanding of cochlear physiology and provide molecular basis evidence for future studies of hearing loss.


Asunto(s)
Análisis de Secuencia de ARN , Animales , Pérdida Auditiva Sensorineural/genética , Pérdida Auditiva Sensorineural/patología , Metabolismo de los Lípidos/genética , Cóclea/patología , Cóclea/metabolismo , Gotas Lipídicas/metabolismo , Humanos
16.
Artículo en Chino | MEDLINE | ID: mdl-38563166

RESUMEN

Objective:To analyze the mutation spectrum of 23-site chip newborn deafness genetic screening in Beijing, and to provide basis for genetic counseling and clinical diagnosis and treatment. Methods:The study included 21 006 babies born in Beijing from December 2022 to June 2023. All subjects underwent newborn deafness genetic screening in Beijing Tongren Hospital, covering 23 variants in 4 genes, the GJB2 gene(c.35delG, c.176_191del16, c.235delC, c.299_300delAT, c.109G>A, c.257C>G, c.512insAACG, c.427C>T, c.35insG), SLC26A4 gene(c.919-2A>G, c.2168A>G, c.1174A>T, c.1226G>A, c.1229C>T, c.1975G>C, c.2027T>A, c.589G>A, c.1707+5G>A, c.917insG, c.281C>T), Mt12SrRNA(m.1555A>G, m.1494C>T) and GJB3 gene(c.538C>T). The mutation detection rate and allele frequency were analyzed. Results:The overall mutation detection rate was 11.516%(2 419/21 006), with the GJB2 gene being the most frequently involved at 9.097%(1 911/21 006), followed by the SLC26A4 gene at 2.123%(446/21 006), the GJB3 gene at 0.362%(76/21 006) and Mt12SrRNA at 0.176%(37/21 006). Among the GJB2 genes, c.109G>A and c.235delC mutation detection rates were the highest, with 6.579%(1 382/21 006) and 1.795%(377/21 006), respectively. Of the SLC26A4 genes, c.919-2A>G and c.2168A>G had the highest mutation rates of 1.423%(299/21 006) and 0.233%(49/21 106), respectively. Regarding the allele frequency, GJB2 c.109G>A was the most common variant with an allele frequency of 3.359%(1 411/42 012), followed by the GJB2 c.235delC at 0.897%(377/42 012) and the SLC26A4 c.919-2A>G at 0.719%(302/42 012). Conclusion:23-site chip newborn deafness genetic screening in Beijing showed that GJB2 c.109G>A mutation detection rate and allele frequency were the highest. This study has enriched the epidemiological data of 23-site chip genetic screening mutation profiles for neonatal deafness, which can provide evidence for clinical practice.


Asunto(s)
Sordera , Pérdida Auditiva , Lactante , Recién Nacido , Humanos , Conexinas/genética , Conexina 26/genética , Sordera/genética , Sordera/diagnóstico , Análisis Mutacional de ADN , Transportadores de Sulfato/genética , Pruebas Genéticas , Mutación , Pérdida Auditiva/genética , Tamizaje Neonatal , China
17.
Cell Discov ; 10(1): 38, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38565878

RESUMEN

Early endosomes (EEs) are crucial in cargo sorting within vesicular trafficking. While cargoes destined for degradation are retained in EEs and eventually transported to lysosomes, recycled cargoes for the plasma membrane (PM) or the Golgi undergo segregation into specialized membrane structures known as EE buds during cargo sorting. Despite this significance, the molecular basis of the membrane expansion during EE bud formation has been poorly understood. In this study, we identify a protein complex comprising SHIP164, an ATPase RhoBTB3, and a retromer subunit Vps26B, which promotes the formation of EE buds at Golgi-EE contacts. Our findings reveal that Vps26B acts as a novel Rab14 effector, and Rab14 activity regulates the association of SHIP164 with EEs. Depletion of SHIP164 leads to enlarged Rab14+ EEs without buds, a phenotype rescued by wild-type SHIP164 but not the lipid transfer-defective mutants. Suppression of RhoBTB3 or Vps26B mirrors the effects of SHIP164 depletion. Together, we propose a lipid transport-dependent pathway mediated by the RhoBTB3-SHIP164-Vps26B complex at Golgi-EE contacts, which is essential for EE budding.

18.
Mar Pollut Bull ; 202: 116377, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38669852

RESUMEN

Red Noctiluca scintillans (RNS), a prominent species of dinoflagellate known for its conspicuous size and ability to form blooms, exhibits heterotrophic behavior and functions as a microzooplankton grazer within the marine food web. In this study, a straightforward technique referred to as the blue-green index (BGI) has been introduced for the purpose of distinguishing and discerning RNS from neighboring waters, owing to its pronounced absorption in the blue-green spectral range. This method has been applied across a range of satellite imagery, encompassing both multi-spectral and hyperspectral sensors. The study delved into three instances of bloom occurrences caused by RNS: firstly, in November 2014 and April 2022 off the western coast of Guangdong, and secondly, in February 2021 within the Beibu Gulf. The notable bloom event in the Beibu Gulf during February 2021 extended across an expansive area totaling 6933.5 km2. The motion speed and direction of the RNS bloom patches were also derived from successive satellite images. The recently introduced BGI method demonstrates insensitivity to suspended sediment, though its successful application necessitates accurate atmospheric correction. Subsequent efforts will involve the quantification of RNS blooms in a more precise manner, utilizing hyperspectral satellite data grounded in optimized band configurations.


Asunto(s)
Dinoflagelados , Monitoreo del Ambiente , Eutrofización , Imágenes Satelitales , Monitoreo del Ambiente/métodos
19.
Sci Total Environ ; 927: 172200, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38575027

RESUMEN

Nitrophenol compounds (NCs) are widely distributed in water environments and regarded as important precursors of disinfection byproducts (DBPs). Herein, 4-nitrophenol and 2-amino-4-nitrophenol were selected as representative NCs to explore chlorinated DBPs (Cl-DBPs) formation during UV/post-chlorination. Dichloronitromethane (DCNM), trichloronitromethane (TCNM), dichloroacetonitrile (DCAN), and trichloromethane (TCM) were formed from 4-nitrophenol and 2-amino-4-nitrophenol during UV/post-chlorination, and the yields of individual Cl-DBPs from 2-amino-4-nitrophenol were higher than those from 4-nitrophenol. Meantime, increasing chlorine contact time, UV fluence, and free chlorine dose could enhance Cl-DBPs formation, while much higher values of the three factors might decrease the yields of Cl-DBPs. Besides, alkaline pH could decrease the yields of halonitromethane (HNMs) and DCAN but increase the yields of TCM. Also, higher concentrations of 4-nitrophenol and 2-amino-4-nitrophenol would induce more Cl-DBPs formation. Subsequently, the possible formation pathways of DCNM, TCNM, DCAN, and TCM form 4-nitrophenol and 2-amino-4-nitrophenol during UV/post-chlorination were proposed according to transformation products (TPs) and density functional theory (DFT) calculation. Notably, Cl-DBPs formed from 2-amino-4-nitrophenol presented higher toxicity than those from 4-nitrophenol. Among these generated Cl-DBPs, DCAN and TCNM posed higher cytotoxicity and genotoxicity, respectively. Furthermore, 4-nitrophenol, 2-amino-4-nitrophenol, and their TPs exhibited ecotoxicity. Finally, 4-nitrophenol and 2-amino-4-nitrophenol presented a high potential to produce DCNM, TCNM, DCAN, and TCM in actual waters during UV/post-chlorination, but the Cl-DBPs yields were markedly different from those in simulated waters. This work can help better understand Cl-DBPs formation from different NCs during UV/post-chlorination and is conducive to controlling Cl-DBPs formation.

20.
J Hazard Mater ; 471: 134362, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38643576

RESUMEN

Cupric ions (Cu2+) are ubiquitous in surface waters and can influence disinfection byproducts (DBPs) formation in water disinfection processes. This work explored the effects of Cu2+ on chlorinated DBPs (Cl-DBPs) formation from six representative nitrophenol compounds (NCs) during UV irradiation followed by a subsequent chlorination (i.e., UV/post-chlorination), and the results showed Cu2+ enhanced chlorinated halonitromethane (Cl-HNMs) formation from five NCs (besides 2-methyl-3-nitrophenol) and dichloroacetonitrile (DCAN) and trichloromethane (TCM) formation from six NCs. Nevertheless, excessive Cu2+ might reduce Cl-DBPs formation. Increasing UV fluences displayed different influences on total Cl-DBPs formation from different NCs, and increasing chlorine dosages and NCs concentrations enhanced that. Moreover, a relatively low pH (5.8) or high pH (7.8) might control the yields of total Cl-DBPs produced from different NCs. Notably, Cu2+ enhanced Cl-DBPs formation from NCs during UV/post-chlorination mainly through the catalytic effect on nitro-benzoquinone production and the conversion of Cl-DBPs from nitro-benzoquinone. Additionally, Cu2+ could increase the toxicity of total Cl-DBPs produced from five NCs besides 2-methyl-3-nitrophenol. Finally, the impacts of Cu2+ on Cl-DBPs formation and toxicity in real waters were quite different from those in simulated waters. This study is conducive to further understanding how Cu2+ affected Cl-DBPs formation and toxicity in chlorine disinfection processes and controlling Cl-DBPs formation in copper containing water.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA