Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 799
Filtrar
Más filtros

Intervalo de año de publicación
1.
Front Microbiol ; 15: 1361508, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39104591

RESUMEN

Multidrug resistant bacteria have been a global health threat currently and frontline clinical treatments for these infections are very limited. To develop potent antibacterial agents with new bactericidal mechanisms is thus needed urgently to address this critical antibiotic resistance challenge. Natural products are a treasure of small molecules with high bioactive and low toxicity. In the present study, we demonstrated that a natural compound, honokiol, showed potent antibacterial activity against a number of Gram-positive bacteria including MRSA and VRE. Moreover, honokiol in combination with clinically used ß-lactam antibiotics exhibits strong synergistic antimicrobial effects against drug-resistant S. aureus strains. Biochemical studies further reveal that honokiol may disrupt the GTPase activity, FtsZ polymerization, cell division. These biological impacts induced by honokiol may ultimately cause bacterial cell death. The in vivo antibacterial activity of honokiol against S. aureus infection was also verified with a biological model of G. mellonella larvae. The in vivo results support that honokiol is low toxic against the larvae and effectively increases the survival rate of the larvae infected with S. aureus. These findings demonstrate the potential of honokiol for further structural advancement as a new class of antibacterial agents with high potency against multidrug-resistant bacteria.

2.
Angew Chem Int Ed Engl ; : e202412222, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39106271

RESUMEN

In recent years, sodium-ion batteries (SIBs) have attracted a lot of attention and are considered an ideal alternative to lithium-ion batteries (LIBs). The hard carbon (HC) anode in SIBs presents a unique challenge for studying the formation process of the solid electrolyte interphase (SEI) during initial cycling, owing to its distinctive porous structure. This study employs a combination of ultrasonic scanning techniques and differential electrochemical mass spectrometry to conduct an in-depth analysis of the two-dimensional distribution and composition of gases during the formation process. The findings reveal distinct gas evolution behaviors in SIBs compared to LIBs during formation. Notably, significant gas evolution is observed during the discharge phase of the formation cycle in SIBs, with higher discharge rates leading to increased gas evolution rates. This phenomenon is likely attributed to the adsorption of CO2 gas by the abundant pores in HC, followed by desorption during discharge. Furthermore, the study demonstrates that the addition of 5A molecular sieves, which competitively adsorb gases, effectively reduces gas adsorption on the anode during formation, thereby significantly enhancing battery performance. This research elucidates the gas adsorption and desorption behavior at the battery interface, providing new insights into the SEI formation process in SIBs.

3.
Protein Pept Lett ; 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39092729

RESUMEN

The Transforming Growth Factor-ß (TGF-ß) mediates embryonic development, maintains cellular homeostasis, regulates immune function, and is involved in a wide range of other biological processes. TGF-ß superfamily signaling pathways play an important role in cancer development and can promote or inhibit tumorigenesis. Type III TGF-ß receptor (TGFBR3) is a co-receptor in the TGF-ß signaling pathway, which often occurs with reduced or complete loss of expression in many cancer patients and can act as a tumor suppressor gene. The reduction or deletion of TGFBR3 is more pronounced compared to other elements in the TGF-ß signaling pathway. In recent years, lung cancer is one of the major malignant tumors that endanger human health, and its prognosis is poor. Recent studies have reported that TGFBR3 expression decreases to varying degrees in different types of lung cancer, both at the tissue level and at the cellular level. The invasion, metastasis, angiogenesis, and apoptosis of lung cancer cells are closely related to the expression of TGFBR3, which strengthens the inhibitory function of TGFBR3 in the evolution of lung cancer. This article reviews the mechanism of TGFBR3 in lung cancer and the influencing factors associated with TGFBR3. Clarifying the physiological function of TGFBR3 and its molecular mechanism in lung cancer is conducive to the diagnosis and treatment of lung cancer.

4.
Int J Biol Macromol ; 278(Pt 1): 134549, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39134198

RESUMEN

This study has been successfully developed the Sodium alginate/Bamboo fiber /Gelatin(SA/BF/Gel)composite conductive hydrogel with adhesive and self-healing properties. Through in-depth research, the influence of Gel content on the tensile, adhesive, self-healing properties, and conductivity of the SA/BF/Gel composite conductive hydrogel was discussed. The sensing performance and sensing mechanism of the material were also investigated, along with a preliminary exploration of its potential applications. An attempt was made to apply the SA/BF/Gel composite conductive hydrogel to 3D printing technology, establishing a connection between the rheological properties of the hydrogel and its printing structure. The addition of Gel significantly improved the flexibility of the hydrogel, with a conductivity of up to 3.12 S/m at a Gel content of 1.5 %. When employed as a sensor, the material exhibited high sensitivity (GF = 2.21) and excellent cyclic stability, rendering it suitable for a wide range of applications in real-time monitoring of bending movements of fingers and wrists, as well as dynamic contact and variations in contact forces on the hydrogel surface. The SA/BF/Gel composite conductive hydrogel has the potential to be utilized in a multitude of applications, including the development of smart wearable devices, the monitoring of individual human beings, and the integration of human beings and machines. Furthermore, the research findings associated with this hydrogel will provide a strong foundation for the advancement of materials science and the integration of smart technologies.

5.
BMC Med Genomics ; 17(1): 216, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39160503

RESUMEN

BACKGROUND: There is growing evidence for a relationship between gut microbiota and hepatic encephalopathy (HE). However, the causal nature of the relationship between gut microbiota and HE has not been thoroughly investigated. METHOD: This study utilized the large-scale genome-wide association studies (GWAS) summary statistics to evaluate the causal association between gut microbiota and HE risk. Specifically, two-sample Mendelian randomization (MR) approach was used to identify the causal microbial taxa for HE. The inverse variance weighted (IVW) method was used as the primary MR analysis. Sensitive analyses were performed to validate the robustness of the results. RESULTS: The IVW method revealed that the genus Bifidobacterium (OR = 0.363, 95% CI: 0.139-0.943, P = 0.037), the family Bifidobacteriaceae (OR = 0.359, 95% CI: 0.133-0.950, P = 0.039), and the order Bifidobacteriales (OR = 0.359, 95% CI: 0.133-0.950, P = 0.039) were negatively associated with HE. However, no causal relationship was observed among them after the Bonferroni correction test. Neither heterogeneity nor horizontal pleiotropy was found in the sensitivity analysis. CONCLUSION: Our MR study demonstrated a potential causal association between Bifidobacterium, Bifidobacteriaceae, and Bifidobacteriales and HE. This finding may provide new therapeutic targets for patients at risk of HE in the future.


Asunto(s)
Microbioma Gastrointestinal , Estudio de Asociación del Genoma Completo , Encefalopatía Hepática , Análisis de la Aleatorización Mendeliana , Humanos , Encefalopatía Hepática/genética , Encefalopatía Hepática/microbiología , Bifidobacterium/genética
6.
iScience ; 27(8): 110403, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39091462

RESUMEN

Constipation and frailty are associated with intestinal dysbiosis. This study aims to identify intestinal microbial signatures that can differentiate between constipated elders accompanied by frailty and those without frailty. We collected stool samples from 61 participants and conducted 16S rRNA gene sequencing. Constipated patients with frailty (Constipation_F) exhibited reduced gut microbial diversities compared to constipated patients without frailty (Constipation_NF) and healthy individuals (C). From differential genera, random forest models identified 14, 8, and 5 biomarkers for distinguishing Constipation_F from Constipation_NF, Constipation_F from C, and Constipation_NF from C, respectively. Functional analysis revealed that pathways (P381-PWY and PWY-5507) related to vitamin B12 synthesis were reduced in Constipation_F, which aligns with the decreased abundances of vitamin-B12-producing Actinomyces and Akkermansia in this group. Our study unveils substantial differences in gut microbiota between constipated elders with frailty and those without, underscoring the diagnostic and therapeutic potential of genera involved in vitamin B12 synthesis.

7.
Chem Asian J ; : e202400878, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39166349

RESUMEN

The selective hydrogenation of nitroaromatics plays an essential role in the chemical industry for the synthesis of anilines and their derivatives, which are known as crucial fine chemicals and pharmaceuticals. In this study, we demonstrate the preparation of Pd/Ti monolith catalyst containing well-isolated metallic Pd sites on Ti substrate through a simple impregnation method, showing remarkable catalytic properties in the selective hydrogenation of nitroaromatics containing various functional groups. Kinetic analyses reveal an apparent activation energy of 61 kJ/mol and the kinetic isotope effect (KH2/KD2) of ~1.7 in the hydrogenation of 3-chloronitrobenzene over Pd/Ti-200 ppm catalyst, indicating the facile dissociation of dihydrogen and the subsequent efficient hydrogenation. The Pd/Ti-200 ppm catalyst also demonstrates good stability and recyclability, maintaining its performance over multiple cycles. This simple but innovative approach not only enhances the efficiency of Pd catalysts in the selective hydrogenation of nitroaromatics but also offers significant potential for industrial applications in aniline production.

8.
Chempluschem ; : e202400386, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-39031624

RESUMEN

Ferroelastic materials with high phase transition temperature have broad application prospects in information conversion and storage, shape memory, energy conversion, hyperelasticity, etc. However, most of the current reports focus on inorganic ferroelastic materials. Inorganic ferroelastic materials have the disadvantages of high energy consumption and harmful metals, which limit their application in practical work. In contrast, organic ferroelastic materials have the advantages of structural adjustability, environmental protection, easy processing, low cost, mechanical flexibility, and so on, which have great development potential in new ferroelastic materials. Here, we have successfully designed and synthesized a pair of homochiral enantiomers [(R/S)-4-fluorobenzoic acid-2-amino-2-phenylethanol] (R- and S-F) using the chemical design strategy of H/F substitution. Compared with the non-F substitution [(R/S)-benzoic acid-2-amino-2-phenylethanol] (R- and S-H), they undergo 2F1-type ferroelastic phase transitions at 370 K. Notably, the ferroelastic domains of R/S-F can be controlled through two physical channels that are temperature and stress, showing great potential in dual-channel switches.

9.
Heliyon ; 10(13): e33859, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39027564

RESUMEN

The global mental health crisis presents a significant challenge to sustainable development, and this crisis is more pronounced in China's rural areas versus urban areas. Alcohol consumption has increased in rural areas with China's economic growth, but the number of studies on the relationship between farmers' alcohol consumption and their mental health is limited. Based on data from the China Labor Force Dynamics Survey (CLDS), this study uses the endogenous switching regression model (ESR) to analyze the influence of alcohol consumption on farmers' mental health. On this basis, the study further conducts a counterfactual analysis to estimate the average treatment effect of alcohol consumption on farmers' mental health. The results show that: (1) There is a significant positive relationship between alcohol consumption and farmers' mental health. Specifically, the mental health index of drinking farmers increases by 19.7 % compared to non-drinking farmers. (2) Heterogeneity analysis shows that alcohol consumption is more beneficial for improving the mental health of male farmers, elderly farmers, and employed farmers. Furthermore, drinking alcohol almost every day, consuming Baijiu, and each drinking consumption ranging from 0 to 100 mL per occasion are more conducive to improving farmers' mental health. These findings have implications for relieving depressive symptomology and improving farmers' mental health in developing countries. The results of this study also provide guidance for addressing the global mental health crisis.

10.
Nucleic Acids Res ; 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39011882

RESUMEN

Bacterial gene expression is a complex process involving extensive regulatory mechanisms. Along with growing interests in this field, Nanopore Direct RNA Sequencing (DRS) provides a promising platform for rapid and comprehensive characterization of bacterial RNA biology. However, the DRS of bacterial RNA is currently deficient in the yield of mRNA-mapping reads and has yet to be exploited for transcriptome-wide RNA modification mapping. Here, we showed that pre-processing of bacterial total RNA (size selection followed by ribosomal RNA depletion and polyadenylation) guaranteed high throughputs of sequencing data and considerably increased the amount of mRNA reads. This way, complex transcriptome architectures were reconstructed for Escherichia coli and Staphylococcus aureus and extended the boundaries of 225 known E. coli operons and 89 defined S. aureus operons. Utilizing unmodified in vitro-transcribed (IVT) RNA libraries as a negative control, several Nanopore-based computational tools globally detected putative modification sites in the E. coli and S. aureus transcriptomes. Combined with Next-Generation Sequencing-based N6-methyladenosine (m6A) detection methods, 75 high-confidence m6A candidates were identified in the E. coli protein-coding transcripts, while none were detected in S. aureus. Altogether, we demonstrated the potential of Nanopore DRS in systematic and convenient transcriptome and epitranscriptome analysis.

11.
Adv Mater ; : e2405673, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39022876

RESUMEN

Immunogenic cell death (ICD) often results in the production and accumulation of adenosine (ADO), a byproduct that negatively impacts the therapeutic effect as well as facilitates tumor development and metastasis. Here, an innovative strategy is elaborately developed to effectively activate ICD while avoiding the generation of immunosuppressive adenosine. Specifically, ZIF-90, an ATP-responsive consumer, is synthesized as the core carrier to encapsulate AB680 (CD73 inhibitor) and then coated with an iron-polyphenol layer to prepare the ICD inducer (AZTF), which is further grafted onto prebiotic bacteria via the esterification reaction to obtain the engineered biohybrid (Bc@AZTF). Particularly, the designed Bc@AZTF can actively enrich in tumor sites and respond to the acidic tumor microenvironment to offload AZTF nanoparticles, which can consume intracellular ATP (iATP) content and simultaneously inhibit the ATP-adenosine axis to reduce the accumulation of adenosine, thereby alleviating adenosine-mediated immunosuppression and strikingly amplifying ICD effect. Importantly, the synergy of anti-PD-1 (αPD-1) with Bc@AZTF not only establishes a collaborative antitumor immune network to potentiate effective tumoricidal immunity but also activates long-lasting immune memory effects to manage tumor recurrence and rechallenge, presenting a new paradigm for ICD treatment combined with adenosine metabolism.

12.
World J Radiol ; 16(6): 203-210, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38983838

RESUMEN

BACKGROUND: Development of distant metastasis (DM) is a major concern during treatment of nasopharyngeal carcinoma (NPC). However, studies have demonstrated improved distant control and survival in patients with advanced NPC with the addition of chemotherapy to concomitant chemoradiotherapy. Therefore, precise prediction of metastasis in patients with NPC is crucial. AIM: To develop a predictive model for metastasis in NPC using detailed magnetic resonance imaging (MRI) reports. METHODS: This retrospective study included 792 patients with non-distant metastatic NPC. A total of 469 imaging variables were obtained from detailed MRI reports. Data were stratified and randomly split into training (50%) and testing sets. Gradient boosting tree (GBT) models were built and used to select variables for predicting DM. A full model comprising all variables and a reduced model with the top-five variables were built. Model performance was assessed by area under the curve (AUC). RESULTS: Among the 792 patients, 94 developed DM during follow-up. The number of metastatic cervical nodes (30.9%), tumor invasion in the posterior half of the nasal cavity (9.7%), two sides of the pharyngeal recess (6.2%), tubal torus (3.3%), and single side of the parapharyngeal space (2.7%) were the top-five contributors for predicting DM, based on their relative importance in GBT models. The testing AUC of the full model was 0.75 (95% confidence interval [CI]: 0.69-0.82). The testing AUC of the reduced model was 0.75 (95%CI: 0.68-0.82). For the whole dataset, the full (AUC = 0.76, 95%CI: 0.72-0.82) and reduced models (AUC = 0.76, 95%CI: 0.71-0.81) outperformed the tumor node-staging system (AUC = 0.67, 95%CI: 0.61-0.73). CONCLUSION: The GBT model outperformed the tumor node-staging system in predicting metastasis in NPC. The number of metastatic cervical nodes was identified as the principal contributing variable.

13.
Cell Rep ; 43(8): 114544, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39052478

RESUMEN

Although RNA structures play important roles in regulating gene expression, the mechanism and function of mRNA folding in plant bacterial pathogens remain elusive. Therefore, we perform dimethyl sulfate sequencing (DMS-seq) on the Pseudomonas syringae under nutrition-rich and -deficient conditions, revealing that the mRNA structure changes substantially in the minimal medium (MM) that tunes global translation efficiency (TE), thereby inducing virulence. This process is led by the increased expression of hfq, which is directly activated by transcription regulators RpoS and CysB. The co-occurrence of Hfq and RpoS in diverse bacteria and the deep conservation of Hfq Y25 is critical for RNA-mediated regulation and implicates the wider biological importance of mRNA structure and feedback loops in the control of global gene expression.

14.
Int J Oncol ; 65(3)2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39027994

RESUMEN

MicroRNAs (miRNAs) are small non­coding RNAs that serve key roles in cell proliferation, migration, invasion and apoptosis by regulating gene expression. In malignant tumors, miRNA­122 serves either as a tumor suppressor or oncogene, influencing tumor progression via downstream gene targeting. However, the precise role of miRNA­122 in cancer remains unclear. miRNA­122 is a potential biomarker and modulator of radiotherapy and chemotherapy. The present review aimed to summarize the roles of miRNA­122 in cancer, its potential as a biomarker for diagnosis and prognosis and its implications in cancer therapy, including radiotherapy and chemotherapy, alongside strategies for systemic delivery.


Asunto(s)
Biomarcadores de Tumor , Regulación Neoplásica de la Expresión Génica , MicroARNs , Neoplasias , Humanos , MicroARNs/genética , Neoplasias/genética , Neoplasias/terapia , Neoplasias/patología , Biomarcadores de Tumor/genética , Pronóstico , Proliferación Celular/genética
15.
J Agric Food Chem ; 72(31): 17210-17218, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39056370

RESUMEN

To identify potent inhibitors of the type III secretion system (T3SS) in the foodborne pathogen Pseudomonas aeruginosa, we synthesized 35 thiazole-containing aryl amides by merging salicylic acid with various heterocycles through active splicing. Screening for exoS promoter activity led to the discovery of a highly effective T3SS inhibitor from these 35 compounds. Through subsequent experiments, it was confirmed that compound II-22 specifically targeted the T3SS of P. aeruginosa. Additionally, compound II-22 inhibited the secretion of the effector protein ExoS by modulating the CyaB-cAMP/Vfr-ExsA and ExsCED-ExsA regulatory pathways. Furthermore, compound II-22 suppressed the transcription of genes involved in the needle complex assembly, leading to reduced bacterial virulence. Further validation through inoculation tests using Galleria mellonella larvae demonstrated the strong in vivo efficacy of compound II-22. The study also revealed that compound II-22 enhanced the bactericidal activity of antibiotics, such as CIP (ciprofloxacin) and TOB (tobramycin). These results could help develop novel antimicrobial drugs to reduce bacterial resistance.


Asunto(s)
Amidas , Antibacterianos , Proteínas Bacterianas , Diseño de Fármacos , Pseudomonas aeruginosa , Tiazoles , Sistemas de Secreción Tipo III , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/genética , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/síntesis química , Sistemas de Secreción Tipo III/genética , Sistemas de Secreción Tipo III/antagonistas & inhibidores , Sistemas de Secreción Tipo III/metabolismo , Tiazoles/farmacología , Tiazoles/química , Tiazoles/síntesis química , Amidas/farmacología , Amidas/química , Amidas/síntesis química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Infecciones por Pseudomonas/tratamiento farmacológico , Infecciones por Pseudomonas/microbiología , Animales , Pruebas de Sensibilidad Microbiana , Mariposas Nocturnas/microbiología , Humanos
16.
Dalton Trans ; 53(31): 12936-12942, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39041301

RESUMEN

To address the shortage of fossil energy, the development of affordable and efficient non-precious metal catalysts for oxygen evolution reaction (OER) from electrocatalytic water splitting is still a crucial challenge. Herein, the bimetallic NiFe metal-organic frameworks (MOFs) are synthesized by hydrothermal and electro-deposition. Benefiting from the synergistic effect of Fe and Ni, the catalyst demonstrates extraordinary activity, which exhibits favorable OER catalytic activity in 1 M KOH solution with an overpotential of 206 mV at 10 mA cm-2. Meanwhile, the obtained NiFe-NDC presents promising stability in the 20 h test at 50 mA cm-2.

17.
Clin Case Rep ; 12(6): e9068, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38855089

RESUMEN

The most frequently reported adverse reaction to zoledronic acid is an acute phase reaction resembling influenza. While rarer adverse events such as osteonecrosis of the jaw and atypical femoral fractures have gained significant recognition, the ocular adverse effects, particularly scleritis, are not yet fully comprehended. Here, we present the case of a 75-year-old female patient with osteoporosis who developed bilateral redness and intense eye pain 48 h after receiving a 5 mg intravenous dose of zoledronic acid. Clinical presentation suggested bilateral conjunctivitis, but treatment with levofloxacin eye drops and acyclovir ophthalmic gel exacerbated the symptoms over 2 days, predominantly affecting the left eye. Ocular ultrasonography revealed thickening of the left eyeball wall with a "T" sign, while an orbital CT scan showed increased thickness of the left sclera. Treatment with methylprednisolone 80 mg intravenous infusion twice daily led to gradual symptom improvement and eventual resolution of inflammation. This report, based on a review of relevant literature, investigates the treatment and outcomes of zoledronic acid-induced scleritis, emphasizing the importance for clinicians to promptly identify and manage this rare and serious ocular adverse reaction.

18.
Nat Commun ; 15(1): 4972, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38862491

RESUMEN

Molecular doping plays an important role in controlling the carrier concentration of organic semiconductors. However, the introduction of dopant counterions often results in increased energetic disorder and traps due to the molecular packing disruption and Coulomb potential wells. To date, no general strategy has been proposed to reduce the counterion-induced structural and energetic disorder. Here, we demonstrate the critical role of non-covalent interactions (NCIs) between counterions and polymers. Employing a computer-aided approach, we identified the optimal counterions and discovered that NCIs determine their docking positions, which significantly affect the counterion-induced energetic disorder. With the optimal counterions, we successfully reduced the energetic disorder to levels even lower than that of the undoped polymer. As a result, we achieved a high n-doped electrical conductivity of over 200 S cm-1 and an eight-fold increase in the thermoelectric power factor. We found that the NCIs have substantial effects on doping efficiency, polymer backbone planarity, and Coulomb potential landscape. Our work not only provides a general strategy for identifying the most suitable counterions but also deepens our understanding of the counterion effects on doped polymeric semiconductors.

19.
Planta ; 260(1): 24, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38858226

RESUMEN

MAIN CONCLUSION: The resurrection plant Boea hygrometrica selectively recruits and assembles drought-specific microbial communities across the plant-soil compartments, which may benefit plant growth and fitness under extreme drought conditions. Plant-associated microbes are essential for facilitating plant growth and fitness under drought stress. The resurrection plant Boea hygrometrica in natural habitats with seasonal rainfall can survive rapid desiccation, yet their interaction with microbiomes under drought conditions remains unexplored. This study examined the bacterial and fungal microbiome structure and drought response across plant-soil compartments of B. hygrometrica by high-throughput amplicon sequencing of 16S rRNA gene and internal transcribed spacer. Our results demonstrated that the diversity, composition, and functional profile of the microbial community varied considerably across the plant-soil compartments and were strongly affected by drought stress. Bacterial and fungal diversity was significantly reduced from soil to endosphere and belowground to aboveground compartments. The compartment-specific enrichment of the dominant bacteria phylum Cyanobacteriota and genus Methylorubrum in leaf endosphere, genera Pseudonocardia in rhizosphere soil and Actinoplanes in root endosphere, and fungal phylum Ascomycota in the aboveground compartments and genera Knufia in root endosphere and Cladosporium in leaf endosphere composed part of the core microbiota with corresponding enrichment of beneficial functions for plant growth and fitness. Moreover, the recruitment of dominant microbial genera Sphingosinicella and Plectosphaerella, Ceratobasidiaceae mycorrhizal fungi, and numerous plant growth-promoting bacteria involving nutrient supply and auxin regulation was observed in desiccated B. hygrometrica plants. Our results suggest that the stable assembled drought-specific microbial community of B. hygrometrica may contribute to plant survival under extreme environments and provide valuable microbial resources for the microbe-mediated drought tolerance enhancement in crops.


Asunto(s)
Sequías , Microbiota , Microbiología del Suelo , Microbiota/genética , Estrés Fisiológico , Bacterias/genética , Bacterias/clasificación , Raíces de Plantas/microbiología , Raíces de Plantas/genética , ARN Ribosómico 16S/genética , Hongos/fisiología , Hongos/genética , Rizosfera , Brassicaceae/microbiología , Brassicaceae/genética , Brassicaceae/fisiología , Hojas de la Planta/microbiología , Hojas de la Planta/genética
20.
Int J Ophthalmol ; 17(6): 1001-1006, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38895683

RESUMEN

AIM: To investigate the morphological characteristics of retinal vessels in patients with different severity of diabetic retinopathy (DR) and in patients with or without diabetic macular edema (DME). METHODS: The 239 eyes of DR patients and 100 eyes of healthy individuals were recruited for the study. The severity of DR patients was graded as mild, moderate and severe non-proliferative diabetic retinopathy (NPDR) according to the international clinical diabetic retinopathy (ICDR) disease severity scale classification, and retinal vascular morphology was quantitatively analyzed in ultra-wide field images using RU-net and transfer learning methods. The presence of DME was determined by optical coherence tomography (OCT), and differences in vascular morphological characteristics were compared between patients with and without DME. RESULTS: Retinal vessel segmentation using RU-net and transfer learning system had an accuracy of 99% and a Dice metric of 0.76. Compared with the healthy group, the DR group had smaller vessel angles (33.68±3.01 vs 37.78±1.60), smaller fractal dimension (Df) values (1.33±0.05 vs 1.41±0.03), less vessel density (1.12±0.44 vs 2.09±0.36) and fewer vascular branches (206.1±88.8 vs 396.5±91.3), all P<0.001. As the severity of DR increased, Df values decreased, P=0.031. No significant difference between the DME and non-DME groups were observed in vascular morphological characteristics. CONCLUSION: In this study, an artificial intelligence retinal vessel segmentation system is used with 99% accuracy, thus providing with relatively satisfactory performance in the evaluation of quantitative vascular morphology. DR patients have a tendency of vascular occlusion and dropout. The presence of DME does not compromise the integral retinal vascular pattern.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA