RESUMEN
Genetic background and age at first exposure have been identified as critical variables that contribute to individual vulnerability to drug addiction. Evidence shows that genetic factors may account for 40-70% of the variance in liability to addiction. Alcohol consumption by young people, especially in the form of binge-drinking, is becoming an alarming phenomenon predictive of future problems with drinking. Thus, the literature indicates the need to better understand the influence of age and genetic background on the development of alcohol dependence. To this aim, the inbred rat strains Lewis (LEW, addiction prone) and Fischer 344 (F344, addiction resistant) were used as a model of genetic vulnerability to addiction and compared with the outbred strain Sprague-Dawley (SD) in a two-bottle choice paradigm as a model of alcohol abuse. During a 9-week period, adolescent and adult male rats of the three strains were intermittently exposed to ethanol (20%) and water during three 24-h sessions/week. Adult and adolescent SD and LEW rats escalated their alcohol intake over time reaching at stable levels, while F344 rats did not escalate their intake, regardless of age at drinking onset. Among adolescents, only F344 rats consumed a higher total amount of ethanol than adults, although only SD and LEW rats escalated their intake. Adult LEW rats, albeit having a lower ethanol consumption as compared to SD rats but greater than F344, showed a more compulsive intake, consuming higher amounts of ethanol during the first hour of exposure, reaching a higher degree of ethanol preference when start drinking as adolescents. Behavioral analysis during the first hour of ethanol consumption revealed significant strain differences, among which noticeable the lack of sedative effect in the LEW strain, at variance with F344 and SD strains, and highest indices of withdrawal (most notable jumping) in LEW rats during the first hour of abstinence days. The present results underscore the importance of individual genetic background and early onset of alcohol use in the progression toward abuse and development of alcohol addiction.
RESUMEN
Smoking during adolescence may increase the likelihood to develop nicotine dependence and to abuse other drugs such as cocaine. Despite great efforts to understand underlying neurobiological mechanisms of this progression, less attention has been paid to the role of genetic factors. Here, we investigated the influence of both genetic background and age at first nicotine exposure in the long-lasting effects on mesolimbic dopamine transmission including the increased cocaine-rewarding effect. Mid-adolescent and adult rats of inbred strains Lewis (addiction prone) and Fischer 344 (addiction resistant) were administered nicotine (0.4 mg/kg) or vehicle once daily for 5 days. Changes in dopamine transmission were investigated by in vivo microdialysis and electrophysiology after 30 days of withdrawal, whereas changes in cocaine-rewarding effect were assessed via conditioned place preference paradigm. Nicotine pre-exposure differentially changed mesolimbic dopamine transmission depending on strain and age of pre-exposure. A potentiation of dopamine response to nicotine was observed in nucleus accumbens (NAc) core of both strains and age groups, whereas dopamine response in NAc shell was enhanced exclusively in Lewis rats exposed to nicotine during adolescence. A similar response was observed following cocaine challenge at adulthood. Changes in VTA dopamine cell population and activity were observed only in adolescent nicotine-pretreated Lewis rats, which also showed an increased cocaine-rewarding effect at adulthood. These results highlight the influence of genetic background in the long-lasting effects of nicotine exposure and suggest that exposure during adolescence might increase nicotine and cocaine-rewarding properties in genetically vulnerable individuals, thereby facilitating progression toward dependence.
Asunto(s)
Trastornos Relacionados con Cocaína/genética , Dopamina/metabolismo , Antecedentes Genéticos , Nicotina/farmacología , Núcleo Accumbens/efectos de los fármacos , Factores de Edad , Animales , Modelos Animales de Enfermedad , Fenómenos Electrofisiológicos , Masculino , Microdiálisis , Ratas , Ratas Endogámicas F344 , Ratas Endogámicas LewRESUMEN
Epidemiological studies have shown that people who begin experimenting drugs of abuse during adolescence are more likely to develop substance use disorders, and the earliest is the beginning of their use, the greatest is the likelihood to become dependent. Understanding the neurobiological changes increasing adolescent vulnerability to drug use is becoming imperative. Although all neurotransmitter systems undergo relevant developmental changes, dopamine system is of particular interest, given its role in a variety of functions related to reward, motivation, and decision making. Thus, in the present study, we investigated differences in mesolimbic and nigrostriatal dopamine transmission between adolescent (5, 6, 7 weeks of age) and adult rats (10-12 weeks of age), in basal conditions and following drug challenge, by using in vivo brain microdialysis. Although no significant difference between adolescents and adults was observed in dopamine basal levels in the nucleus accumbens (NAc)shell and core, reduced DA levels were found in the dorsolateral striatum (DLS) of early and mid-adolescent rats. Adolescent rats showed greater increase of dopamine in the NAc shell following nicotine (0.4 mg/kg), THC (1.0 mg/kg), and morphine (1.0 mg/kg), in the NAc core following nicotine and morphine, and in the DLS following THC, morphine, and cocaine (10 mg/kg). These results, while adding new insight in the development and functionality of the dopamine system during different stages of adolescence, might provide a neurochemical basis for the greater vulnerability of adolescents to drugs of abuse and for the postulated gateway effect of nicotine and THC toward abuse of other illicit substances.
Asunto(s)
Encéfalo/efectos de los fármacos , Cocaína/farmacología , Dopamina/metabolismo , Dronabinol/farmacología , Morfina/farmacología , Nicotina/farmacología , Factores de Edad , Analgésicos Opioides/metabolismo , Analgésicos Opioides/farmacología , Animales , Encéfalo/fisiopatología , Cocaína/metabolismo , Modelos Animales de Enfermedad , Inhibidores de Captación de Dopamina/metabolismo , Inhibidores de Captación de Dopamina/farmacología , Dronabinol/metabolismo , Estimulantes Ganglionares/metabolismo , Estimulantes Ganglionares/farmacología , Masculino , Microdiálisis , Morfina/metabolismo , Nicotina/metabolismo , Núcleo Accumbens/efectos de los fármacos , Psicotrópicos/metabolismo , Psicotrópicos/farmacología , Ratas , Trastornos Relacionados con Sustancias/metabolismo , Trastornos Relacionados con Sustancias/fisiopatología , Transmisión Sináptica/efectos de los fármacosRESUMEN
Although MDMA (3,4-methylendioxymethamphetamine, ecstasy) neurotoxicity in serotonin neurons is largely recognized in a wide variety of species including man, neurotoxicity in dopamine (DA) neurons is thought to be species-specific. MDMA is mainly consumed by adolescents, often in conjunction with caffeine (Energy Drinks) and this association has been reported to exacerbate MDMA toxic effects. In order to model these aspects of MDMA use, vis-à-vis their impact on DA neurons, we investigated the effects of adolescent exposure to low doses of MDMA (5 mg/kg for 10 days), alone or in combination with caffeine (10 mg/kg) on neuronal and functional DA indices and on recognition memory in adult rats. MDMA reduced density of tyrosine hydroxylase (TH) positive neurons in the ventral tegmental area and in the substantia nigra pars compacta, and immunoreactivity of TH and DA transporter in the nucleus accumbens (NAc) shell and core, and caudate-putamen. This same treatment caused a reduction of basal dialysate DA in the NAc core. MDMA-pretreated rats also showed behavioral sensitization to a MDMA challenge at adulthood and potentiation of MDMA-induced increase of dialysate DA in the NAc core, but not in the NAc shell. In addition, MDMA-treated rats displayed a deficit in recognition memory. Caffeine co-administration did not affect the above outcomes. Our results show that adolescent exposure of rats to low doses of MDMA induces long-lasting and widespread reduction of DA neurons indicative of a neurotoxic effect on DA neurons and suggestive of a degeneration of the same neurons.
Asunto(s)
Encéfalo/efectos de los fármacos , Encéfalo/crecimiento & desarrollo , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/patología , Trastornos de la Memoria/inducido químicamente , N-Metil-3,4-metilenodioxianfetamina/toxicidad , Animales , Encéfalo/metabolismo , Encéfalo/patología , Cafeína/toxicidad , Cuerpo Celular/efectos de los fármacos , Cuerpo Celular/patología , Recuento de Células , Neuronas Dopaminérgicas/metabolismo , Interacciones Farmacológicas , Técnica del Anticuerpo Fluorescente , Masculino , Trastornos de la Memoria/metabolismo , Trastornos de la Memoria/patología , Ratas Sprague-Dawley , Reconocimiento en Psicología/efectos de los fármacos , Reconocimiento en Psicología/fisiología , Tirosina 3-Monooxigenasa/metabolismoRESUMEN
Cannabis is the most commonly used illicit drug worldwide, and use is typically initiated during adolescence. The endocannabinoid system has an important role in formation of the nervous system, from very early development through adolescence. Cannabis exposure during this vulnerable period might lead to neurobiological changes that affect adult brain functions and increase the risk of cannabis use disorder. The aim of this study was to investigate whether exposure to Δ(9)-tetrahydrocannabinol (THC) in adolescent rats might enhance reinforcing effects of cannabinoids in adulthood. Male adolescent rats were treated with increasing doses of THC (or its vehicle) twice/day for 11 consecutive days (PND 45-55). When the animals reached adulthood, they were tested by allowing them to intravenously self-administer the cannabinoid CB1-receptor agonist WIN55,212-2. In a separate set of animals given the same THC (or vehicle) treatment regimen, electrophysiological and neurochemical experiments were performed to assess possible modifications of the mesolimbic dopaminergic system, which is critically involved in cannabinoid-induced reward. Behavioral data showed that acquisition of WIN55,212-2 self-administration was enhanced in THC-exposed rats relative to vehicle-exposed controls. Neurophysiological data showed that THC-exposed rats displayed a reduced capacity for WIN55,212-2 to stimulate firing of dopamine neurons in the ventral tegmental area and to increase dopamine levels in the nucleus accumbens shell. These findings-that early, passive exposure to THC can produce lasting alterations of the reward system of the brain and subsequently increase cannabinoid self-administration in adulthood-suggest a mechanism by which adolescent cannabis exposure could increase the risk of subsequent cannabis dependence in humans.
Asunto(s)
Benzoxazinas/administración & dosificación , Neuronas Dopaminérgicas/efectos de los fármacos , Dronabinol/administración & dosificación , Morfolinas/administración & dosificación , Naftalenos/administración & dosificación , Núcleo Accumbens/efectos de los fármacos , Receptor Cannabinoide CB1/agonistas , Autoadministración , Área Tegmental Ventral/efectos de los fármacos , Animales , Conducta Animal/efectos de los fármacos , Dopamina/metabolismo , Neuronas Dopaminérgicas/fisiología , Masculino , Núcleo Accumbens/metabolismo , Ratas , Área Tegmental Ventral/fisiologíaRESUMEN
Considering the interesting pharmacological profile of the delta (δ) selective opioid agonist compound SNC-80, conformationally constrained analogs containing two diazatricyclodecane ring systems in place of dimethylpiperazine core motif were synthesized. The compounds showed subnanomolar or low nanomolar δ opioid receptor binding affinity. Depending upon the substituents on the diazatricyclodecane ring, these compounds displayed varying selectivity for δ opioid receptor over µ and κ receptors. Amongst the novel compounds, 1Aa showed the more interesting biological profile, with higher δ affinity and selectivity compared to SNC-80. The δ receptor agonist profile and antinociceptive activity of 1Aa were confirmed using ex-vivo (isolated mouse vas deferens) and in vivo (tail flick) assays.
Asunto(s)
Analgésicos/farmacología , Dolor/tratamiento farmacológico , Compuestos Policíclicos/farmacología , Receptores Opioides delta/agonistas , Analgésicos/administración & dosificación , Analgésicos/síntesis química , Animales , Relación Dosis-Respuesta a Droga , Ligandos , Ratones , Estructura Molecular , Dimensión del Dolor , Compuestos Policíclicos/administración & dosificación , Compuestos Policíclicos/síntesis química , Relación Estructura-ActividadRESUMEN
Rich evidence has highlighted that stimulation of gamma-amino-butyric acid (GABA)(B) receptors increases the occurrence of spike-and-wave discharges (SWDs), the electroencephalographic (EEG) landmark of absence epilepsy (AE). Recent findings suggest that the outcomes of GABA(B) activation in vivo are contingent on the chemical characteristics of the agonist. In particular, the endogenous ligand gamma-hydroxybutyrate (GHB) and its precursor gamma-butyro-lactone (GBL) have been shown to elicit different effects than the prototypical GABA(B) agonist baclofen. In view of these premises, the present study was aimed at the characterization of the effects of baclofen (0.5-10 mg/kg, i.p.) and GBL (5-100 mg/kg, i.p.) on the spontaneous SWDs and locomotor activity of DBA/2J mice. While both baclofen and GBL dose-dependently increased SWDs episodes, high doses of the latter (100 mg/kg, i.p.) reduced the occurrence of these phenomena and increased the number of isolated spikes. Interestingly, both compounds elicited a dose-dependent reduction of locomotor activity, in comparison with their vehicle-treated controls. The GABA(B) selective antagonist, SCH50911 (50 mg/kg, i.p.), reversed the changes in SWD occurrence and locomotion induced by baclofen and GBL, but failed to elicit intrinsic effects on either paradigm. These results indicate that GABA(B) receptor signaling might exert differential effects on SWDs in DBA/2J mice.
Asunto(s)
Epilepsia Tipo Ausencia/metabolismo , Receptores de GABA-B/metabolismo , Animales , Baclofeno/farmacología , Electroencefalografía , Epilepsia Tipo Ausencia/fisiopatología , Agonistas del GABA/farmacología , Masculino , Ratones , Ratones Endogámicos DBA , Actividad Motora/efectos de los fármacosRESUMEN
A series of analogues 2a-i related to 3-{2-[bis-(4-fluorophenyl)methoxy]ethyl}-8-(1H-indol-2-ylmethyl)-3,8-diazabicyclo[3.2.1]octane (1) in which the 3,8-diazabicyclo[3.2.1]octane core was replaced by 3,6-diazabicyclo[3.1.1]heptane ring system has been synthesized and evaluated for their ability to inhibit DA reuptake into striatal nerve endings (synaptosomes). Biological data showed that compound 2a, the closest analogue of lead 1, possessed an increased reuptake inhibition activity over 1 (2a, K(i)=5.5 nM). Replacement of the indole ring with bioisosteric aromatic rings--benzothiophene (2b), benzofurane (2c), or indene (2d)--resulted, with the exception of 2d, in a double digit nanomolar activity. Changing the indenyl moiety of 2d with simplified aryl groups led to compounds 2e-h which displayed a similar or slightly decreased activity with respect to the ground term. Naphthalene derivative (2i) demonstrated a weaker activity than aromatic analogues.
Asunto(s)
Compuestos Bicíclicos Heterocíclicos con Puentes/química , Inhibidores de Captación de Dopamina/química , Inhibidores de Captación de Dopamina/farmacología , Heptanos/química , Heptanos/farmacología , Indoles/química , Animales , Bioensayo , Inhibidores de Captación de Dopamina/síntesis química , Heptanos/síntesis química , Masculino , Ratas , Ratas Sprague-Dawley , Sinaptosomas/efectos de los fármacosRESUMEN
New analogues (2a-p) of the previously reported CB(2) ligands 6-methyl- and 6-chloro-1-(2',4'-dichlorophenyl)-N-piperidin-1-yl-1,4-dihydroindeno[1,2-c]pyrazole-3-carboxamides (1a,b) have been synthesized and evaluated for cannabinoid receptor affinity. One example, 1-(2',4'-dichlorophenyl)-6-methyl-N-cyclohexyilamine-1,4-dihydroindeno[1,2-c] pyrazole-3-carboxamide (2a) was shown to have single digit nanomolar affinity for cannabinoid CB(2) receptors. Furthermore, compounds 2a and 2b, as well as lead structures 1a,b, were also shown to be agonist in an in vitro model based on human promyelocytic leukemia HL-60 cells.
Asunto(s)
Indenos/síntesis química , Piperidinas/síntesis química , Pirazoles/síntesis química , Receptor Cannabinoide CB2/agonistas , Células HL-60 , Humanos , Indenos/química , Indenos/farmacología , Ligandos , Proteína Quinasa 1 Activada por Mitógenos/biosíntesis , Proteína Quinasa 3 Activada por Mitógenos/biosíntesis , Fosforilación , Piperidinas/química , Piperidinas/farmacología , Pirazoles/química , Pirazoles/farmacología , Ensayo de Unión Radioligante , Relación Estructura-ActividadRESUMEN
The effect of R-(+)-[2,3-dihydro-5-methyl-3-[(morpholiny)methyl]pyrolol[1,2,3-de]-1,4-benzoxazin-yl]-(1-naphthalenyl)methanone mesylate (WIN 55,212-2; a cannabinoid receptor agonist) was investigated on contractions of the bisected (epididymal and prostatic portions) rat vas deferens to assess the role of cannabinoid receptors in sympathetic ATP neurotransmission. WIN 55,212-2 inhibited the electrically induced contractions in both portions of the rat vas deferens. In the presence of the alpha1-adrenoreceptor antagonist prazosin, electrical stimulation produces a contraction mediated exclusively by ATP. In this condition, WIN 55,212-2 in the prostatic portion elicited a concentration-dependent inhibition that was antagonized by N-piperidinyl-[8-chloro-1-(2,4-dichlorophenyl)-1,4,5,6-tetrahydrobenzo[6,7]cyclohepta[1,2-c]pyrazole-3-carboxamide] (NESS 0327), a selective cannabinoid CB1 receptor antagonist. NESS 0327 caused a parallel dextral displacement of the WIN 55,212-2 concentration-response curve. It is suggested that activation of pre-junctional cannabinoid receptors on sympathetic nerves of the vas deferens modulates ATP neurotransmission.
Asunto(s)
Adenosina Trifosfato/farmacología , Morfolinas/farmacología , Naftalenos/farmacología , Receptor Cannabinoide CB1/fisiología , Conducto Deferente/inervación , Antagonistas Adrenérgicos alfa/farmacología , Animales , Benzoxazinas , Estimulación Eléctrica , Epidídimo , Masculino , Contracción Muscular/efectos de los fármacos , Músculo Liso/efectos de los fármacos , Músculo Liso/fisiología , Piperidinas/farmacología , Prazosina/farmacología , Próstata , Pirazoles/farmacología , Ratas , Ratas Sprague-Dawley , Receptor Cannabinoide CB1/agonistas , Receptor Cannabinoide CB1/antagonistas & inhibidores , Receptores Presinapticos/agonistas , Receptores Presinapticos/antagonistas & inhibidores , Receptores Presinapticos/fisiología , Conducto Deferente/efectos de los fármacos , Conducto Deferente/fisiologíaRESUMEN
The effect of two alpha-adrenergic receptor antagonists widely employed in the therapy of benign prostatic hyperplasia, tamsulosin [(-)-(R)-5-[2-[[2-(0-ethoxyphenoxy) ethyl]amino]propyl]-2-methoxybenzenesulfonamide] and alfuzosin [(+/-)-N-[3-[(4-amino-6,7-dimethoxy-2-quinazolinyl) methylamino]propyl] tetrahydro-2-furancarboxamide], was investigated in the rat vas deferens. Because several clinical studies have shown that tamsulosin causes ejaculatory disorders, this study also evaluated the possible mechanisms implicated in these disorders by comparing the effect of tamsulosin with that of alfuzosin. Tamsulosin competitively antagonized the contractions induced by noradrenaline in vitro in the epididymal portion of the vas deferens with a potency pA(2) value of 9.2 +/- 0.8. In the prostatic portion, tamsulosin increased the amplitude of intermittent spikes induced by exogenous noradrenaline (100-1000 microM). In both portions of the vas deferens, alfuzosin behaved as an alpha-adrenergic antagonist blocking the contractions induced by exogenous noradrenaline without altering spikes. The administration of tamsulosin (3 microg/kg i.v.) significantly reduced the contractions evoked by electrical pulses in the epididymal portion, whereas it increased those produced in the prostatic portion. Intravenous tamsulosin antagonized the contraction produced by exogenous noradrenaline, whereas alfuzosin administration (10 microg/kg i.v.) did not change the electrically induced contractions in both portions of the rat vas deferens and did not antagonize the contractions produced by exogenous noradrenaline. The fact that tamsulosin unusually enhances noradrenaline-induced intermittent spike contractions and nerve stimulation-induced twitches in the prostatic portions might be linked to its greater propensity to cause sexual dysfunctions.