Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Base de datos
Tipo del documento
Intervalo de año de publicación
1.
J Sci Food Agric ; 104(11): 6359-6375, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-38334314

RESUMEN

Dietary patterns play an important role in regards to the modulation and control of the gut microbiome composition and function. The interaction between diet and microbiota plays an important role in order to maintain intestinal homeostasis, which ultimately affect the host's health. Diet directly impacts the microbes that inhabit the gastrointestinal tract (GIT), which then contributes to the production of secondary metabolites, such as short-chain fatty acids, neurotransmitters, and antimicrobial peptides. Dietary consumption with genetically modified probiotics can be the best vaccine delivery vector and protect cells from various illnesses. A holistic approach to disease prevention, treatment, and management takes these intrinsically linked diet-microbes, microbe-microbe interactions, and microbe-host interactions into account. Dietary components, such as fiber can modulate beneficial gut microbiota, and they have resulting ameliorative effects against metabolic disorders. Medical interventions, such as antibiotic drugs can conversely have detrimental effects on gut microbiota by disputing the balance between Bacteroides and firmicute, which contribute to continuing disease states. We summarize the known effects of various dietary components, such as fibers, carbohydrates, fatty acids, vitamins, minerals, proteins, phenolic acids, and antibiotics on the composition of the gut microbiota in this article in addition to the beneficial effect of genetically modified probiotics and consequentially their role in regards to shaping human health. © 2024 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Asunto(s)
Microbioma Gastrointestinal , Probióticos , Probióticos/administración & dosificación , Humanos , Animales , Tracto Gastrointestinal/microbiología , Tracto Gastrointestinal/metabolismo , Bacterias/metabolismo , Bacterias/clasificación , Bacterias/genética , Dieta
2.
ACS Omega ; 8(10): 9004-9030, 2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36936323

RESUMEN

In previous years, different pollutants, for example, organic dyes, antibiotics, heavy metals, pharmaceuticals, and agricultural pollutants, have been of note to the water enterprise due to their insufficient reduction during standard water and wastewater processing methods. MOFs have been found to have potential toward wastewater management. This Review focused on the synthesis process (such as traditional, electrochemical, microwave, sonochemical, mechanochemical, and continuous-flow spray-drying method) of MOF materials. Moreover, the properties of the MOF materials have been discussed in detail. Further, MOF materials' applications for wastewater treatment (such as the removal of antibiotics, organic dyes, heavy metal ions, and agricultural waste) have been discussed. Additionally, we have compared the performances of some typical MOFs-based materials with those of other commonly used materials. Finally, the study's current challenges, future prospects, and outlook have been highlighted.

3.
Adv Sci (Weinh) ; 9(26): e2202187, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35853696

RESUMEN

Current interest toward ionic liquids (ILs) stems from some of their novel characteristics, like low vapor pressure, thermal stability, and nonflammability, integrated through high ionic conductivity and broad range of electrochemical strength. Nowadays, ionic liquids represent a new category of chemical-based compounds for developing superior and multifunctional substances with potential in several fields. ILs can be used in solvents such as salt electrolyte and additional materials. By adding functional physiochemical characteristics, a variety of IL-based electrolytes can also be used for energy storage purposes. It is hoped that the present review will supply guidance for future research focused on IL-based polymer nanocomposites electrolytes for sensors, high performance, biomedicine, and environmental applications. Additionally, a comprehensive overview about the polymer-based composites' ILs components, including a classification of the types of polymer matrix available is provided in this review. More focus is placed upon ILs-based polymeric nanocomposites used in multiple applications such as electrochemical biosensors, energy-related materials, biomedicine, actuators, environmental, and the aviation and aerospace industries. At last, existing challenges and prospects in this field are discussed and concluding remarks are provided.


Asunto(s)
Líquidos Iónicos , Nanocompuestos , Electrólitos/química , Líquidos Iónicos/química , Polímeros/química , Solventes/química
4.
ACS Omega ; 5(30): 18693-18699, 2020 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-32775871

RESUMEN

An organic-inorganic complexation method was applied for the synthesis of bismuth-manganese bimetallic oxide (BMO) nanoparticles where highly dispersed oxide particles were stabilized in an organic matrix (hexamethylenediamine). The as-synthesized hybrid material was subjected to microscopic, optical, and structural studies to gain comprehensive insights into the system. In the X-ray diffraction pattern, the majority of the diffracted peaks are matched to the orthorhombic phase of the Bi3Mn2O7 structure. To extract the electrochemical property, the hybrid system was applied as an anode material and investigated for supercapacitive performance under alkaline conditions. The specific capacitance obtained was 612 F·g-1 at the current density of 1 A·g-1, and under the same current density, the energy density and power density achieved were 137.78 W·h·kg-1 and 0.90 kW·kg-1, respectively.

5.
Polymers (Basel) ; 12(3)2020 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-32110927

RESUMEN

In recent years, numerous discoveries and investigations have been remarked for the development of carbon-based polymer nanocomposites. Carbon-based materials and their composites hold encouraging employment in a broad array of fields, for example, energy storage devices, fuel cells, membranes sensors, actuators, and electromagnetic shielding. Carbon and its derivatives exhibit some remarkable features such as high conductivity, high surface area, excellent chemical endurance, and good mechanical durability. On the other hand, characteristics such as docility, lower price, and high environmental resistance are some of the unique properties of conducting polymers (CPs). To enhance the properties and performance, polymeric electrode materials can be modified suitably by metal oxides and carbon materials resulting in a composite that helps in the collection and accumulation of charges due to large surface area. The carbon-polymer nanocomposites assist in overcoming the difficulties arising in achieving the high performance of polymeric compounds and deliver high-performance composites that can be used in electrochemical energy storage devices. Carbon-based polymer nanocomposites have both advantages and disadvantages, so in this review, attempts are made to understand their synergistic behavior and resulting performance. The three electrochemical energy storage systems and the type of electrode materials used for them have been studied here in this article and some aspects for example morphology, exterior area, temperature, and approaches have been observed to influence the activity of electrochemical methods. This review article evaluates and compiles reported data to present a significant and extensive summary of the state of the art.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA