Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Cell Chem Biol ; 31(9): 1555-1556, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39303693

RESUMEN

In celebration of the 30th anniversary of Cell Chemical Biology, the editors introduce the September special issue and reflect on the significant evolution and multidisciplinary nature of the chemical biology field and the journal since its inception. They provide a glimpse of the evolving scope and direction of Cell Chemical Biology.


Asunto(s)
Publicaciones Periódicas como Asunto , Historia del Siglo XXI , Historia del Siglo XX , Humanos , Aniversarios y Eventos Especiales
2.
Cell Chem Biol ; 30(11): 1323, 2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-37977123
3.
PLoS One ; 18(3): e0282508, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36897854

RESUMEN

PKM2 is a rate-limiting enzyme in the glycolytic process and is involved in regulating tumor proliferation. Several amino acids (AAs) such as Asn, Asp, Val, and Cys have been shown to bind to the AA binding pocket of PKM2 and modulate its oligomeric state, substrate binding affinity, and activity. Although previous studies have attributed that the main chain and side chain of bound AAs are responsible for initiating signal to regulate PKM2, the signal transduction pathway remains elusive. To identify the residues involved in signal transfer process, N70 and N75 located at two ends of a ß strand connecting the active site and AA binding pocket were altered. Biochemical studies of these variants with various AA ligands (Asn, Asp, Val, and Cys), illustrate that N70 and N75, along with ß1 connecting these residues are part of the signal transduction pathway between the AA binding pocket and the active site. The results demonstrate that mutation of N70 to D prevents the transfer of the inhibitory signal mediated by Val and Cys, whereas N75 to L alteration blocks the activating signal initiated by Asn and Asp. Taken together, this study confirms that N70 is one of the residues responsible for transmitting the inhibitory signal and N75 is involved in the activation signal flow.


Asunto(s)
Piruvato Quinasa , Aminoácidos/metabolismo , Dominio Catalítico , Isoformas de Proteínas/metabolismo , Piruvato Quinasa/química , Piruvato Quinasa/metabolismo , Humanos , Transducción de Señal , Proteínas de Unión a Hormona Tiroide
5.
Cell Chem Biol ; 29(3): 351-352, 2022 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-35303438
12.
J Biol Chem ; 295(16): 5390-5403, 2020 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-32144209

RESUMEN

Pyruvate kinase muscle isoform 2 (PKM2) is a key glycolytic enzyme involved in ATP generation and critical for cancer metabolism. PKM2 is expressed in many human cancers and is regulated by complex mechanisms that promote tumor growth and proliferation. Therefore, it is considered an attractive therapeutic target for modulating tumor metabolism. Various stimuli allosterically regulate PKM2 by cycling it between highly active and less active states. Several small molecules activate PKM2 by binding to its intersubunit interface. Serine and cysteine serve as an activator and inhibitor of PKM2, respectively, by binding to its amino acid (AA)-binding pocket, which therefore represents a potential druggable site. Despite binding similarly to PKM2, how cysteine and serine differentially regulate this enzyme remains elusive. Using kinetic analyses, fluorescence binding, X-ray crystallography, and gel filtration experiments with asparagine, aspartate, and valine as PKM2 ligands, we examined whether the differences in the side-chain polarity of these AAs trigger distinct allosteric responses in PKM2. We found that Asn (polar) and Asp (charged) activate PKM2 and that Val (hydrophobic) inhibits it. The results also indicate that both Asn and Asp can restore the activity of Val-inhibited PKM2. AA-bound crystal structures of PKM2 displayed distinctive interactions within the binding pocket, causing unique allosteric effects in the enzyme. These structure-function analyses of AA-mediated PKM2 regulation shed light on the chemical requirements in the development of mechanism-based small-molecule modulators targeting the AA-binding pocket of PKM2 and provide broader insights into the regulatory mechanisms of complex allosteric enzymes.


Asunto(s)
Sitio Alostérico , Aminoácidos/metabolismo , Proteínas Portadoras/metabolismo , Proteínas de la Membrana/metabolismo , Hormonas Tiroideas/metabolismo , Regulación Alostérica , Aminoácidos/química , Proteínas Portadoras/antagonistas & inhibidores , Proteínas Portadoras/química , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Humanos , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/química , Unión Proteica , Multimerización de Proteína , Hormonas Tiroideas/química , Proteínas de Unión a Hormona Tiroide
13.
J Biol Chem ; 295(51): 17425-17440, 2020 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-33453989

RESUMEN

Pyruvate kinase muscle isoform 2 (PKM2) is a key glycolytic enzyme and transcriptional coactivator and is critical for tumor metabolism. In cancer cells, native tetrameric PKM2 is phosphorylated or acetylated, which initiates a switch to a dimeric/monomeric form that translocates into the nucleus, causing oncogene transcription. However, it is not known how these post-translational modifications (PTMs) disrupt the oligomeric state of PKM2. We explored this question via crystallographic and biophysical analyses of PKM2 mutants containing residues that mimic phosphorylation and acetylation. We find that the PTMs elicit major structural reorganization of the fructose 1,6-bisphosphate (FBP), an allosteric activator, binding site, impacting the interaction with FBP and causing a disruption in oligomerization. To gain insight into how these modifications might cause unique outcomes in cancer cells, we examined the impact of increasing the intracellular pH (pHi) from ∼7.1 (in normal cells) to ∼7.5 (in cancer cells). Biochemical studies of WT PKM2 (wtPKM2) and the two mimetic variants demonstrated that the activity decreases as the pH is increased from 7.0 to 8.0, and wtPKM2 is optimally active and amenable to FBP-mediated allosteric regulation at pHi 7.5. However, the PTM mimetics exist as a mixture of tetramer and dimer, indicating that physiologically dimeric fraction is important and might be necessary for the modified PKM2 to translocate into the nucleus. Thus, our findings provide insight into how PTMs and pH regulate PKM2 and offer a broader understanding of its intricate allosteric regulation mechanism by phosphorylation or acetylation.


Asunto(s)
Piruvato Quinasa/metabolismo , Acetilación , Regulación Alostérica , Glucólisis , Humanos , Concentración de Iones de Hidrógeno , Lisina/metabolismo , Imitación Molecular , Fosforilación , Fosfoserina/metabolismo , Unión Proteica
14.
Biochemistry ; 58(35): 3669-3682, 2019 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-31386812

RESUMEN

Cancer cells regulate key enzymes in the glycolytic pathway to control the glycolytic flux, which is necessary for their growth and proliferation. One of the enzymes is pyruvate kinase muscle isoform 2 (PKM2), which is allosterically regulated by various small molecules. Using detailed biochemical and kinetic studies, we demonstrate that cysteine inhibits wild-type (wt) PKM2 by shifting from an active tetramer to a mixture of a tetramer and a less active dimer/monomer equilibrium and that the inhibition is dependent on cysteine concentration. The cysteine-mediated PKM2 inhibition is reversed by fructose 1,6-bisphosphate, an allosteric activator of PKM2. Furthermore, kinetic studies using two dimeric PKM2 variants, S437Y PKM2 and G415R PKM2, show that the reversal is caused by the tetramerization of wtPKM2. The crystal structure of the wtPKM2-Cys complex was determined at 2.25 Å, which showed that cysteine is held to the amino acid binding site via its main chain groups, similar to that observed for phenylalanine, alanine, serine, and tryptophan. Notably, ligand binding studies using fluorescence and isothermal titration calorimetry show that the presence of phosphoenolpyruvate alters the binding affinities of amino acids for wtPKM2 and vice versa, thereby unravelling the existence of a functionally bidirectional coupling between the amino acid binding site and the active site of wtPKM2.


Asunto(s)
Proteínas Portadoras/antagonistas & inhibidores , Proteínas Portadoras/química , Cisteína/farmacología , Inhibidores Enzimáticos/farmacología , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/química , Hormonas Tiroideas/química , Sustitución de Aminoácidos/genética , Aminoácidos/química , Aminoácidos/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Catálisis , Dominio Catalítico/genética , Cristalografía por Rayos X , Humanos , Isoenzimas/antagonistas & inhibidores , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Ligandos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Modelos Moleculares , Proteínas Mutantes/antagonistas & inhibidores , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Fosfoenolpiruvato/química , Fosfoenolpiruvato/metabolismo , Unión Proteica , Conformación Proteica , Serina/genética , Hormonas Tiroideas/genética , Hormonas Tiroideas/metabolismo , Tirosina/genética , Proteínas de Unión a Hormona Tiroide
15.
Methods Enzymol ; 605: 291-323, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29909828

RESUMEN

The organosulfur metabolite dimethylsulfoniopropionate (DMSP) and its enzymatic breakdown product dimethyl sulfide (DMS) have important implications in the global sulfur cycle and in marine microbial food webs. Enormous amounts of DMSP are produced in marine environments where microbial communities import and catabolize it via either the demethylation or the cleavage pathways. The enzymes that cleave DMSP are termed "DMSP lyases" and generate acrylate or hydroxypropionate, and ~107tons of DMS annually. An important environmental factor affecting DMS generation by the DMSP lyases is the availability of metal ions as these enzymes use various cofactors for catalysis. This chapter summarizes advances on bacterial DMSP catabolism, with an emphasis on various biochemical methods employed for the isolation and characterization of bacterial DMSP lyases. Strategies are presented for the purification of DMSP lyases expressed in bacterial cells. Specific conditions for the efficient isolation of apoproteins in Escherichia coli are detailed. DMSP cleavage is effectively inferred, utilizing the described HPLC-based acrylate detection assay. Finally, substrate and metal binding interactions are examined using fluorescence and UV-visible assays. Together, these methods are rapid and well suited for the biochemical and structural characterization of DMSP lyases and in the assessment of uncharacterized DMSP catabolic enzymes, and new metalloenzymes in general.


Asunto(s)
Organismos Acuáticos/metabolismo , Bacterias/metabolismo , Liasas de Carbono-Azufre/aislamiento & purificación , Pruebas de Enzimas/métodos , Apoenzimas/genética , Apoenzimas/aislamiento & purificación , Apoenzimas/metabolismo , Liasas de Carbono-Azufre/genética , Liasas de Carbono-Azufre/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Sulfuros/metabolismo , Compuestos de Sulfonio/metabolismo
16.
Biochemistry ; 56(50): 6517-6520, 2017 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-29182273

RESUMEN

Pyruvate kinase muscle isoform 2 (PKM2) catalyzes the terminal step in glycolysis, transferring a phosphoryl group from phosphoenolpyruvate to ADP, to produce pyruvate and ATP. PKM2 activity is allosterically regulated by fructose 1,6-bisphosphate (FBP), an upstream glycolytic intermediate. FBP stabilizes the tetrameric form of the enzyme. In its absence, the PKM2 tetramers dissociate, yielding a dimer-monomer mixture having lower enzymatic activity. The S437Y variant of PKM2 is incapable of binding FBP. Consistent with that defect, we find that S437Y exists in a monomer-dimer equilibrium in solution, with a Kd of ∼20 µM. Interestingly, however, the protein crystallizes as a tetramer, providing insight into the structural basis for impaired FBP binding of S437Y.


Asunto(s)
Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Hormonas Tiroideas/química , Hormonas Tiroideas/metabolismo , Proteínas Portadoras/genética , Proliferación Celular , Fructosadifosfatos/metabolismo , Glucólisis , Proteínas de la Membrana/genética , Fosforilación , Polimorfismo de Nucleótido Simple/genética , Isoformas de Proteínas/metabolismo , Multimerización de Proteína , Piruvato Quinasa/metabolismo , Relación Estructura-Actividad , Hormonas Tiroideas/genética , Proteínas de Unión a Hormona Tiroide
17.
Biochemistry ; 56(43): 5771-5785, 2017 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-28981257

RESUMEN

Prolyl hydroxylation is a very common post-translational modification and plays many roles in eukaryotes such as collagen stabilization, hypoxia sensing, and controlling protein transcription and translation. There is a growing body of evidence that suggests that prokaryotes contain prolyl 4-hydroxylases (P4Hs) homologous to the hypoxia-inducible factor (HIF) prolyl hydroxylase domain (PHD) enzymes that act on elongation factor Tu (EFTu) and are likely involved in the regulation of bacterial translation. Recent biochemical and structural studies with a PHD from Pseudomonas putida (PPHD) determined that it forms a complex with EFTu and hydroxylates a prolyl residue of EFTu. Moreover, while animal, plant, and viral P4Hs act on peptidyl proline, most prokaryotic P4Hs have been known to target free l-proline; the exceptions include PPHD and a P4H from Bacillus anthracis (BaP4H) that modifies collagen-like proline-rich peptides. Here we use biophysical and mass spectrometric methods to demonstrate that BaP4H recognizes full-length BaEFTu and a BaEFTu 9-mer peptide for site-specific proline hydroxylation. Using size-exclusion chromatography coupled small-angle X-ray scattering (SEC-SAXS) and binding studies, we determined that BaP4H forms a 1:1 heterodimeric complex with BaEFTu. The SEC-SAXS studies reveal dissociation of BaP4H dimeric subunits upon interaction with BaEFTu. While BaP4H is unusual within bacteria in that it is structurally and functionally similar to the animal PHDs and collagen P4Hs, respectively, this work provides further evidence of its promiscuous substrate recognition. It is possible that the enzyme might have evolved to hydroxylate a universally conserved protein in prokaryotes, similar to the PHDs, and implies a functional role in B. anthracis.


Asunto(s)
Bacillus anthracis/metabolismo , Proteínas Bacterianas/metabolismo , Factor Tu de Elongación Peptídica/metabolismo , Prolil Hidroxilasas/metabolismo , Bacillus anthracis/química , Bacillus anthracis/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Factor Tu de Elongación Peptídica/química , Factor Tu de Elongación Peptídica/genética , Prolil Hidroxilasas/química , Prolil Hidroxilasas/genética , Unión Proteica , Dominios Proteicos , Difracción de Rayos X
18.
Adv Protein Chem Struct Biol ; 109: 195-222, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28683918

RESUMEN

The biochemistry of dimethylsulfoniopropionate (DMSP) catabolism is reviewed. The microbes that catalyze the reactions central to DMSP catabolic pathways are described, and the focus is on the enzymology of the process. Approximately 109tons of DMSP is released annually by marine eukaryotes as an osmolyte. A vast majority of DMSP is assimilated by bacteria through either a demethylation or lyase pathways, producing either the methane thiol or the volatile dimethylsulfide (DMS), respectively. Enzymatic breakdown of DMSP generates ~107tons of DMS annually, which may have impact on global climate. DMS also acts as a chemoattractant for zooplanktons and seabirds. Both DMSP and DMS play a key role in the global sulfur cycle and are key nutrients for marine microbial growth. Important enzymes in the biochemical pathways of DMSP catabolism are covered in this review, with a focus on the latest developments in their mechanism.


Asunto(s)
Bacterias/enzimología , Bacterias/metabolismo , Proteínas Bacterianas/metabolismo , Compuestos de Sulfonio/metabolismo , Secuencia de Aminoácidos , Bacterias/química , Bacterias/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Coenzima A Transferasas/química , Coenzima A Transferasas/genética , Coenzima A Transferasas/metabolismo , Regulación Bacteriana de la Expresión Génica , Liasas/química , Liasas/genética , Liasas/metabolismo , Redes y Vías Metabólicas , Modelos Moleculares , Conformación Proteica , Proteobacteria/química , Proteobacteria/enzimología , Proteobacteria/genética , Proteobacteria/metabolismo , Compuestos de Sulfonio/química
19.
Biochemistry ; 56(23): 2873-2885, 2017 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-28511016

RESUMEN

Enormous amounts of the organic osmolyte dimethylsulfoniopropionate (DMSP) are produced in marine environments where bacterial DMSP lyases cleave it, yielding acrylate and the climate-active gas dimethyl sulfide (DMS). SAR11 bacteria are the most abundant clade of heterotrophic bacteria in the oceans and play a key role in DMSP catabolism. An important environmental factor affecting DMS generation via DMSP lyases is the availability of metal ions because they are essential cofactors for many of these enzymes. Here we examine the structure and activity of DddK in the presence of various metal ions. We have established that DddK containing a double-stranded ß-helical motif utilizes various divalent metal ions as cofactors for catalytic activity. However, nickel, an abundant metal ion in marine environments, adopts a distorted octahedral coordination environment and conferred the highest DMSP lyase activity. Crystal structures of cofactor-bound DddK reveal key metal ion binding and catalytic residues and provide the first rationalization for varying activities with different metal ions. The structures of DddK along with site-directed mutagenesis and ultraviolet-visible studies are consistent with Tyr 64 acting as a base to initiate the ß-elimination reaction of DMSP. Our biochemical and structural studies provide a detailed understanding of DMS generation by one of the ocean's most prolific bacteria.


Asunto(s)
Alphaproteobacteria/enzimología , Organismos Acuáticos/enzimología , Proteínas Bacterianas/metabolismo , Liasas de Carbono-Azufre/metabolismo , Modelos Moleculares , Compuestos de Sulfonio/metabolismo , Acrilatos/metabolismo , Alphaproteobacteria/crecimiento & desarrollo , Secuencia de Aminoácidos , Organismos Acuáticos/crecimiento & desarrollo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Sitios de Unión , Liasas de Carbono-Azufre/química , Liasas de Carbono-Azufre/genética , Dominio Catalítico , Secuencia Conservada , Cristalografía por Rayos X , Mutagénesis Sitio-Dirigida , Mutación , Níquel/química , Océanos y Mares , Conformación Proteica , Conformación Proteica en Lámina beta , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Alineación de Secuencia , Sulfuros/metabolismo , Compuestos de Sulfonio/química , Tirosina/química
20.
Biochemistry ; 55(44): 6162-6174, 2016 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-27755868

RESUMEN

The marine microbial catabolism of dimethylsulfoniopropionate (DMSP) by the lyase pathway liberates ∼300 million tons of dimethyl sulfide (DMS) per year, which plays a major role in the biogeochemical cycling of sulfur. Recent biochemical and structural studies of some DMSP lyases, including DddQ, reveal the importance of divalent transition metal ions in assisting DMSP cleavage. While DddQ is believed to be zinc-dependent primarily on the basis of structural studies, excess zinc inhibits the enzyme. We examine the importance of iron in regulating the DMSP ß-elimination reaction catalyzed by DddQ as our as-isolated purple-colored enzyme possesses ∼0.5 Fe/subunit. The UV-visible spectrum exhibited a feature at 550 nm, consistent with a tyrosinate-Fe(III) ligand-to-metal charge transfer transition. Incubation of as-isolated DddQ with added iron increases the intensity of the 550 nm peak, whereas addition of dithionite causes a bleaching as Fe(III) is reduced. Both the Fe(III) oxidized and Fe(II) reduced species are active, with similar kcat values and 2-fold differences in their Km values for DMSP. The slow turnover of Fe(III)-bound DddQ allowed us to capture a substrate-bound form of the enzyme. Our DMSP-Fe(III)-DddQ structure reveals conformational changes associated with substrate binding and shows that DMSP is positioned optimally to bind iron and is in the proximity of Tyr 120 that acts as a Lewis base to initiate catalysis. The structures of Tris-, DMSP-, and acrylate-bound forms of Fe(III)-DddQ reported here illustrate various states of the enzyme along the reaction pathway. These results provide new insights into DMSP lyase catalysis and have broader significance for understanding the mechanism of oceanic DMS production.


Asunto(s)
Liasas de Carbono-Azufre/química , Metales/química , Compuestos Férricos/química , Cinética , Conformación Proteica , Espectrofotometría Ultravioleta , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA