RESUMEN
In Escherichia coli, the disaccharide trehalose can be metabolized as a carbon source or be accumulated as an osmoprotectant under osmotic stress. In hypertonic environments, E. coli accumulates trehalose in the cell by synthesis from glucose mediated by the cytosolic enzymes OtsA and OtsB. Trehalose in the periplasm can be hydrolyzed into glucose by the periplasmic trehalase TreA. We have previously shown that a treA mutant of extraintestinal E. coli strain BEN2908 displayed increased resistance to osmotic stress by 0.6 M urea, and reduced production of type 1 fimbriae, reduced invasion of avian fibroblasts, and decreased bladder colonization in a murine model of urinary tract infection. Since loss of TreA likely results in higher periplasmic trehalose concentrations, we wondered if deletion of otsA and otsB genes, which would lead to decreased internal trehalose concentrations, would reduce resistance to stress by 0.6 M urea and promote type 1 fimbriae production. The BEN2908ΔotsBA mutant was sensitive to osmotic stress by urea, but displayed an even more pronounced reduction in production of type 1 fimbriae, with the consequent reduction in adhesion/invasion of avian fibroblasts and reduced bladder colonization in the murine urinary tract. The BEN2908ΔtreAotsBA mutant also showed a reduction in production of type 1 fimbriae, but in contrast to the ΔotsBA mutant, resisted better than the wild type in the presence of urea. We hypothesize that, in BEN2908, resistance to stress by urea would depend on the levels of periplasmic trehalose, but type 1 fimbriae production would be influenced by the levels of cytosolic trehalose.
Asunto(s)
Fimbrias Bacterianas , Osmorregulación , Trehalosa , Vejiga Urinaria , Infecciones Urinarias , Animales , Trehalosa/metabolismo , Ratones , Vejiga Urinaria/microbiología , Fimbrias Bacterianas/metabolismo , Fimbrias Bacterianas/genética , Infecciones Urinarias/microbiología , Infecciones por Escherichia coli/microbiología , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Escherichia coli/metabolismo , Escherichia coli/genética , Modelos Animales de Enfermedad , Femenino , Presión Osmótica , Escherichia coli Patógena Extraintestinal/metabolismo , Escherichia coli Patógena Extraintestinal/genética , Urea/metabolismo , Trehalasa/metabolismo , Trehalasa/genética , Eliminación de Gen , Glucosa/metabolismoRESUMEN
Escherichia coli (E. coli) is a gram-negative bacillus and resident of the normal intestinal microbiota. However, some E. coli strains can cause diseases in humans, other mammals and birds ranging from intestinal infections, for example, diarrhea and dysentery, to extraintestinal infections, such as urinary tract infections, respiratory tract infections, meningitis, and sepsis. In terms of morbidity and mortality, pathogenic E. coli has a great impact on public health, with an economic cost of several billion dollars annually worldwide. Antibiotics are not usually used as first-line treatment for diarrheal illness caused by E. coli and in the case of bloody diarrhea, antibiotics are avoided due to the increased risk of hemolytic uremic syndrome. On the other hand, extraintestinal infections are treated with various antibiotics depending on the site of infection and susceptibility testing. Several alarming papers concerning the rising antibiotic resistance rates in E. coli strains have been published. The silent pandemic of multidrug-resistant bacteria including pathogenic E. coli that have become more difficult to treat favored prophylactic approaches such as E. coli vaccines. This review provides an overview of the pathogenesis of different pathotypes of E. coli, the virulence factors involved and updates on the major aspects of vaccine development against different E. coli pathotypes.
RESUMEN
Fimbrial adhesins promote bacterial adherence and biofilm formation. Sequencing of avian pathogenic Escherichia coli (APEC) strain QT598 identified new fimbriae belonging to the π group, which we named PL (P-like) fimbriae since the genetic organization and sequence are similar to those of P and related fimbriae. Genes encoding PL fimbriae located on IncF plasmids are present in diverse E. coli isolates from poultry, human systemic infections, and other sources. As with P fimbriae, PL fimbriae exhibit divergence in adhesin-encoding genes and could be divided into 5 classes based on sequence differences in the PlfG adhesin. plf genes from two predominant PlfG adhesin classes, PlfG class I (PlfGI) and PlfGII, were cloned. PL fimbriae were visualized by electron microscopy, associated with increased biofilm, demonstrated distinct hemagglutination profiles, and promoted adherence to human bladder and kidney epithelial cells. The genes encoding hybrid fimbriae were comprised of genes from plfQT598, wherein plfG was replaced by papG; the adhesin-encoding genes were also functional and mediated adherence to epithelial cells, demonstrating compatibility between the components of these two types of fimbriae. Deletion of plf genes did not reduce colonization of the mouse urinary tract in a single-strain infection model. In contrast, loss of plf genes significantly reduced competitive colonization in the mouse kidneys. Furthermore, plf gene expression was increased over 40-fold in the bladder compared to during in vitro culture. Overall, PL fimbriae represent a new group of fimbriae demonstrating both functional differences from and similarities to P fimbriae, which mediated adherence to host cells and improved competitive colonization of the mouse kidney. IMPORTANCE Fimbriae are important colonization factors in many bacterial species. The identification of a new type of fimbriae encoded on some IncF plasmids in E. coli was investigated. Genomic sequences demonstrated these fimbrial gene clusters have genetic diversity, particularly in the adhesin-encoding plfG gene. Functional studies demonstrated differences in hemagglutination specificity, although both types of Plf adhesin under study mediated adherence to human urinary epithelial cells. A plf mutant also showed decreased colonization of the kidneys in a mouse competitive infection model. PL fimbriae may represent previously unrecognized adhesins that could contribute to host specificity and tissue tropism of some E. coli strains.
Asunto(s)
Infecciones por Escherichia coli , Escherichia coli Patógena Extraintestinal , Proteínas Fimbrias , Adhesinas Bacterianas/genética , Adhesinas Bacterianas/metabolismo , Adhesinas de Escherichia coli/genética , Adhesinas de Escherichia coli/metabolismo , Animales , Adhesión Bacteriana/fisiología , Escherichia coli/metabolismo , Infecciones por Escherichia coli/microbiología , Infecciones por Escherichia coli/veterinaria , Escherichia coli Patógena Extraintestinal/genética , Escherichia coli Patógena Extraintestinal/metabolismo , Proteínas Fimbrias/genética , Proteínas Fimbrias/metabolismo , Fimbrias Bacterianas/metabolismo , Humanos , RatonesRESUMEN
INTRODUCTION: This retrospective, non-randomized, observational study was conducted at ASG Eye Hospital, Kathmandu to evaluate the outcome of phacoemulsification without anti-Vascular Endothelial Growth Factor (VEGF) in patients with treatment naïve diabetic retinopathy. MATERIALS AND METHODS: Records of all patients who underwent phacoemulsification without Bevacizumab in treatment of naïve patients with any grade of non-proliferative Diabetic Retinopathy (NPDR) were seen. Pre-operative and post-operative visual acuity along with central macular thickness (CMT) was compared. RESULTS: The study comprised 32 eyes of 20 patients with treatment naïve non-proliferative Diabetic Retinopathy who underwent phacoemulsification. Twelve were men and eight were women with an average age of 69.2 years (range 55 years to 83 years). The average preoperative central macular thickness as measured on optical coherence tomography was 254.63± 20.25 microns and 1-month postoperative central macular thickness was 254.72± 19.96 microns; the study did not find any significant difference (p-value 0.918). The average difference in the central macular thickness between the 1-month postoperative and preoperative values was 0.09 microns. CONCLUSION: Uneventful phacoemulsification in eyes with treatment naïve diabetic retinopathy does not cause an increase in central macular thickness after surgery and thus anti-Vascular Endothelial Growth Factor as an adjunct is not mandatory.
Asunto(s)
Extracción de Catarata , Diabetes Mellitus , Retinopatía Diabética , Facoemulsificación , Femenino , Humanos , Masculino , Persona de Mediana Edad , Retinopatía Diabética/complicaciones , Retinopatía Diabética/diagnóstico , Retinopatía Diabética/cirugía , Estudios Retrospectivos , Factores de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Anciano , Anciano de 80 o más AñosRESUMEN
Intratumoral heterogeneity has been described for various tumor types and models of human cancer, and can have profound effects on tumor progression and drug resistance. This study describes an in-depth analysis of molecular and functional heterogeneity among subclonal populations (SCPs) derived from a single triple-negative breast cancer cell line, including copy number analysis, whole-exome and RNA sequencing, proteome analysis, and barcode analysis of clonal dynamics, as well as functional assays. The SCPs were found to have multiple unique genetic alterations and displayed significant variation in anchorage independent growth and tumor forming ability. Analyses of clonal dynamics in SCP mixtures using DNA barcode technology revealed selection for distinct clonal populations in different in vitro and in vivo environmental contexts, demonstrating that in vitro propagation of cancer cell lines using different culture conditions can contribute to the establishment of unique strains. These analyses also revealed strong enrichment of a single SCP during the development of xenograft tumors in immune-compromised mice. This SCP displayed attenuated interferon signaling in vivo and reduced sensitivity to the antiproliferative effects of type I interferons. Reduction in interferon signaling was found to provide a selective advantage within the xenograft microenvironment specifically. In concordance with the previously described role of interferon signaling as tumor suppressor, these findings suggest that similar selective pressures may be operative in human cancer and patient-derived xenograft models.
Asunto(s)
Heterogeneidad Genética , Neoplasias de la Mama Triple Negativas/genética , Microambiente Tumoral/genética , Animales , Humanos , Ratones , Mutación , Neoplasias de la Mama Triple Negativas/patologíaRESUMEN
KIF14 is a mitotic kinesin whose malfunction is associated with cerebral and renal developmental defects and several cancers. Like other kinesins, KIF14 couples ATP hydrolysis and microtubule binding to the generation of mechanical work, but the coupling mechanism between these processes is still not fully clear. Here we report 20 high-resolution (2.7-3.9 Å) cryo-electron microscopy KIF14-microtubule structures with complementary functional assays. Analysis procedures were implemented to separate coexisting conformations of microtubule-bound monomeric and dimeric KIF14 constructs. The data provide a comprehensive view of the microtubule and nucleotide induced KIF14 conformational changes. It shows that: 1) microtubule binding, the nucleotide species, and the neck-linker domain govern the transition between three major conformations of the motor domain; 2) an undocked neck-linker prevents the nucleotide-binding pocket to fully close and dampens ATP hydrolysis; 3) 13 neck-linker residues are required to assume a stable docked conformation; 4) the neck-linker position controls the hydrolysis rather than the nucleotide binding step; 5) the two motor domains of KIF14 dimers adopt distinct conformations when bound to the microtubule; and 6) the formation of the two-heads-bound-state introduces structural changes in both motor domains of KIF14 dimers. These observations provide the structural basis for a coordinated chemo-mechanical kinesin translocation model.
Asunto(s)
Cinesinas/química , Cinesinas/metabolismo , Proteínas Oncogénicas/química , Proteínas Oncogénicas/metabolismo , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Sitios de Unión , Microscopía por Crioelectrón , Cinesinas/genética , Ligandos , Ratones , Microtúbulos/química , Microtúbulos/genética , Microtúbulos/metabolismo , Simulación del Acoplamiento Molecular , Proteínas Oncogénicas/genética , Unión Proteica , Conformación Proteica , Dominios ProteicosRESUMEN
Amputation of a salamander limb triggers a regeneration process that is perfect. A limited number of genes have been studied in this context and even fewer have been analyzed functionally. In this work, we use the BMP signaling inhibitor LDN193189 on Ambystoma mexicanum to explore the role of BMPs in regeneration. We find that BMP signaling is required for proper expression of various patterning genes and that its inhibition causes major defects in the regenerated limbs. Fgf8 is downregulated when BMP signaling is blocked, but ectopic injection of either human or axolotl protein did not rescue the defects. By administering LDN193189 treatments at different time points during regeneration, we show clearly that limb regeneration progresses in a proximal to distal fashion. This demonstrates that BMPs play a major role in patterning of regenerated limbs and that regeneration is a progressive process like development.
Asunto(s)
Ambystoma mexicanum/metabolismo , Proteínas Anfibias/metabolismo , Proteínas Morfogenéticas Óseas/metabolismo , Extremidades/fisiología , Regeneración/fisiología , Transducción de Señal , Ambystoma mexicanum/crecimiento & desarrollo , Proteínas Anfibias/genética , Animales , Proteínas Morfogenéticas Óseas/genética , Proliferación Celular/efectos de los fármacos , Factor 8 de Crecimiento de Fibroblastos/genética , Factor 8 de Crecimiento de Fibroblastos/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Humanos , Larva/genética , Larva/crecimiento & desarrollo , Larva/metabolismo , Factor de Transcripción MSX1/genética , Factor de Transcripción MSX1/metabolismo , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Fosforilación/efectos de los fármacos , Pirazoles/farmacología , Pirimidinas/farmacología , Regeneración/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Proteína Smad1/genética , Proteína Smad1/metabolismo , Proteína Smad5/genética , Proteína Smad5/metabolismoRESUMEN
Cells are subjected to oxidative stress during the initiation and progression of tumors, and this imposes selective pressure for cancer cells to adapt mechanisms to tolerate these conditions. Here, we examined the dependency of cancer cells on glutathione (GSH), the most abundant cellular antioxidant. While cancer cell lines displayed a broad range of sensitivities to inhibition of GSH synthesis, the majority were resistant to GSH depletion. To identify cellular pathways required for this resistance, we carried out genetic and pharmacologic screens. Both approaches revealed that inhibition of deubiquitinating enzymes (DUBs) sensitizes cancer cells to GSH depletion. Inhibition of GSH synthesis, in combination with DUB inhibition, led to an accumulation of polyubiquitinated proteins, induction of proteotoxic stress, and cell death. These results indicate that depletion of GSH renders cancer cells dependent on DUB activity to maintain protein homeostasis and cell viability and reveal a potentially exploitable vulnerability for cancer therapy.
Asunto(s)
Antioxidantes/metabolismo , Supervivencia Celular/efectos de los fármacos , Enzimas Desubicuitinizantes/metabolismo , Glutatión/metabolismo , Proteostasis/efectos de los fármacos , Células A549 , Aminopiridinas/farmacología , Animales , Butionina Sulfoximina/farmacología , Dominio Catalítico/efectos de los fármacos , Enzimas Desubicuitinizantes/antagonistas & inhibidores , Femenino , Glutamato-Cisteína Ligasa/antagonistas & inhibidores , Glutamato-Cisteína Ligasa/química , Glutamato-Cisteína Ligasa/metabolismo , Humanos , Células MCF-7 , Glándulas Mamarias Animales/citología , Glándulas Mamarias Humanas/citología , Ratones , Ratones Endogámicos C57BL , Ratones Desnudos , Organoides/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Tiocianatos/farmacología , Carga Tumoral/efectos de los fármacos , Proteínas Ubiquitinadas/metabolismo , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
The authors describe leukemic retinopathy with foveal leukemic infiltrates as the presenting feature of chronic myeloid leukemia. Spectral domain optical coherence tomography (SD-OCT) features of leukemic foveal infiltrates are presented. Though the retinopathy resolved with remission of disease, visual recovery was not complete due to loss of ellipsoid zone on SD-OCT.
Asunto(s)
Fóvea Central/patología , Leucemia Mielógena Crónica BCR-ABL Positiva/complicaciones , Enfermedades de la Retina/etiología , Tomografía de Coherencia Óptica/métodos , Agudeza Visual , Humanos , Leucemia Mielógena Crónica BCR-ABL Positiva/sangre , Leucemia Mielógena Crónica BCR-ABL Positiva/diagnóstico , Recuento de Leucocitos , Masculino , Enfermedades de la Retina/diagnóstico , Adulto JovenRESUMEN
Cell-cell adhesion is central to morphogenesis and maintenance of epithelial cell state. We previously identified 27 candidate cell-cell adhesion regulatory proteins (CCARPs) whose down-regulation disrupts epithelial cell-cell adhesion during collective migration. Using a protein interaction mapping strategy, we found that 18 CCARPs link to core components of adherens junctions or desmosomes. We further mapped linkages between the CCARPs and other known cell-cell adhesion proteins, including hits from recent screens uncovering novel components of E-cadherin adhesions. Mechanistic studies of one novel CCARP which links to multiple cell-cell adhesion proteins, the phosphatase DUSP23, revealed that it promotes dephosphorylation of ß-catenin at Tyr 142 and enhances the interaction between α- and ß-catenin. DUSP23 knockdown specifically diminished adhesion to E-cadherin without altering adhesion to fibronectin matrix proteins. Furthermore, DUSP23 knockdown produced "zipper-like" cell-cell adhesions, caused defects in transmission of polarization cues, and reduced coordination during collective migration. Thus, this study identifies multiple novel connections between proteins that regulate cell-cell interactions and provides evidence for a previously unrecognized role for DUSP23 in regulating E-cadherin adherens junctions through promoting the dephosphorylation of ß-catenin.
Asunto(s)
Uniones Adherentes/metabolismo , Fosfatasas de Especificidad Dual/metabolismo , Mapeo de Interacción de Proteínas/métodos , alfa Catenina/metabolismo , beta Catenina/metabolismo , Antígenos CD , Cadherinas/metabolismo , Adhesión Celular , Línea Celular , Regulación hacia Abajo , Fosfatasas de Especificidad Dual/genética , Células HEK293 , Humanos , Fosforilación , Unión Proteica , Mapas de Interacción de Proteínas , Tirosina/metabolismo , alfa Catenina/química , beta Catenina/químicaRESUMEN
Clinical and genomic evidence suggests that the metastatic potential of a primary tumor may be dictated by prometastatic events that have additional oncogenic capability. To test this "deterministic" hypothesis, we adopted a comparative oncogenomics-guided function-based strategy involving: (1) comparison of global transcriptomes of two genetically engineered mouse models with contrasting metastatic potential, (2) genomic and transcriptomic profiles of human melanoma, (3) functional genetic screen for enhancers of cell invasion, and (4) evidence of expression selection in human melanoma tissues. This integrated effort identified six genes that are potently proinvasive and oncogenic. Furthermore, we show that one such gene, ACP5, confers spontaneous metastasis in vivo, engages a key pathway governing metastasis, and is prognostic in human primary melanomas.
Asunto(s)
Melanoma/genética , Melanoma/patología , Oncogenes/genética , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/patología , Fosfatasa Ácida/genética , Fosfatasa Ácida/metabolismo , Animales , Linaje de la Célula/genética , Secuencia Conservada/genética , Evolución Molecular , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Genoma/genética , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Estimación de Kaplan-Meier , Ratones , Invasividad Neoplásica , Metástasis de la Neoplasia , Estadificación de Neoplasias , Fosforilación , Reproducibilidad de los Resultados , Fosfatasa Ácida Tartratorresistente , Análisis de Matrices TisularesRESUMEN
Glioblastoma multiforme (GBM) is the most common and lethal primary brain cancer that is driven by aberrant signaling of growth factor receptors, particularly the epidermal growth factor receptor (EGFR). EGFR signaling is tightly regulated by receptor endocytosis and lysosome-mediated degradation, although the molecular mechanisms governing such regulation, particularly in the context of cancer, remain poorly delineated. Here, high-resolution genomic profiles of GBM identified a highly recurrent focal 1p36 deletion encompassing the putative tumor suppressor gene, Mig-6. We show that Mig-6 quells the malignant potential of GBM cells and dampens EGFR signaling by driving EGFR into late endosomes and lysosome-mediated degradation upon ligand stimulation. Mechanistically, this effect is mediated by the binding of Mig-6 to a SNARE protein STX8, a protein known to be required for late endosome trafficking. Thus, Mig-6 functions to ensure recruitment of internalized receptor to late endosomes and subsequently the lysosomal degradation compartment through its ability to specifically link EGFR and STX8 during ligand-stimulated EGFR trafficking. In GBM, the highly frequent loss of Mig-6 would therefore serve to sustain aberrant EGFR-mediated oncogenic signaling. Together, these data uncover a unique tumor suppression mechanism involving the regulation of receptor trafficking.
Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/química , Neoplasias Encefálicas/metabolismo , Receptores ErbB/metabolismo , Regulación Neoplásica de la Expresión Génica , Glioma/metabolismo , Proteínas Supresoras de Tumor/fisiología , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/fisiología , Animales , Adhesión Celular , Línea Celular Tumoral , Proliferación Celular , Humanos , Péptidos y Proteínas de Señalización Intracelular , Lisosomas/metabolismo , Ratones , Invasividad Neoplásica , Proteínas Supresoras de Tumor/genética , Técnicas del Sistema de Dos HíbridosRESUMEN
Genome-wide copy number analyses of human cancers identified a frequent 5p13 amplification in several solid tumour types, including lung (56%), ovarian (38%), breast (32%), prostate (37%) and melanoma (32%). Here, using integrative analysis of a genomic profile of the region, we identify a Golgi protein, GOLPH3, as a candidate targeted for amplification. Gain- and loss-of-function studies in vitro and in vivo validated GOLPH3 as a potent oncogene. Physically, GOLPH3 localizes to the trans-Golgi network and interacts with components of the retromer complex, which in yeast has been linked to target of rapamycin (TOR) signalling. Mechanistically, GOLPH3 regulates cell size, enhances growth-factor-induced mTOR (also known as FRAP1) signalling in human cancer cells, and alters the response to an mTOR inhibitor in vivo. Thus, genomic and genetic, biological, functional and biochemical data in yeast and humans establishes GOLPH3 as a new oncogene that is commonly targeted for amplification in human cancer, and is capable of modulating the response to rapamycin, a cancer drug in clinical use.