RESUMEN
BACKGROUND: Enterococcus faecium is a Gram-positive bacterium, naturally present in the human intestinal microbiota, but is also an opportunistic pathogen responsible for healthcare-associated infections. Persisters are individuals of a subpopulation able to survive by arrest of growth coping with conditions that are lethal for the rest of the population. These persistent cells can grow again when the stress disappears from their environment and can cause relapses. RESULTS: In this study, we highlighted that ciprofloxacin (10-fold the MIC) led to the formation of persister cells of E. faecium. The kill curve was typically biphasic with an initial drop of survival (more than 2 orders of magnitude reduction) followed by a constant bacterial count. Growth curves and antimicrobial susceptibility tests of these persisters were similar to those of the original cells. In addition, by genomic analyses, we confirmed that the persisters were genotypically identical to the wild type. Comparative proteomic analysis revealed that 56 proteins have significantly different abundances in persisters compared to cells harvested before the addition of stressing agent. Most of them were related to energetic metabolisms, some polypeptides were involved in transcription regulation, and seven were stress proteins like CspA, PrsA, ClpX and particularly enzymes linked to the oxidative stress response. CONCLUSIONS: This work provided evidences that the pathogen E. faecium was able to enter a state of persister that may have an impact in chronic infections and relapses. Moreover, putative key effectors of this phenotypical behavior were identified by proteomic approach.
Asunto(s)
Enterococcus faecium , Humanos , Enterococcus faecium/genética , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Proteómica , Ciprofloxacina/farmacología , Recurrencia , Pruebas de Sensibilidad MicrobianaRESUMEN
Staphylococcus lugdunensis is a coagulase-negative Staphylococcus that emerges as an important opportunistic pathogen. However, little is known about the regulation underlying the transition from commensal to virulent state. Based on knowledge of S. aureus virulence, we suspected that the agr quorum sensing system may be an important determinant for the pathogenicity of S. lugdunensis. We investigated the functions of the transcriptional regulator AgrA using the agrA deletion mutant. AgrA played a role in cell pigmentation: ΔargA mutant colonies were white while the parental strains were slightly yellow. Compared with the wild-type strain, the ΔargA mutant was affected in its ability to form biofilm and was less able to survive in mice macrophages. Moreover, the growth of ΔagrA was significantly reduced by the addition of 10% NaCl or 0.4 mM H2O2 and its survival after 2 h in the presence of 1 mM H2O2 was more than 10-fold reduced. To explore the mechanisms involved beyond these phenotypes, the ΔagrA proteome and transcriptome were characterized by mass spectrometry and RNA-Seq. We found that AgrA controlled several virulence factors as well as stress-response factors, which are well correlated with the reduced resistance of the ΔagrA mutant to osmotic and oxidative stresses. These results were not the consequence of the deregulation of RNAIII of the agr system, since no phenotype or alteration of the proteomic profile has been observed for the ΔRNAIII mutant. Altogether, our results highlighted that the AgrA regulator of S. lugdunensis played a key role in its ability to become pathogenic. IMPORTANCE Although belonging to the natural human skin flora, Staphylococcus lugdunensis is recognized as a particularly aggressive and destructive pathogen. This study aimed to characterize the role of the response regulator AgrA, which is a component of the quorum-sensing agr system and known to be a major element in the regulation of pathogenicity and biofilm formation in Staphylococcus aureus. In the present study, we showed that, contrary to S. aureus, the agrA deletion mutant produced less biofilm. Inactivation of agrA conferred a white colony phenotype and impacted S. lugdunensis in its ability to survive in mice macrophages and to cope with osmotic and oxidative stresses. By global proteomic and transcriptomic approaches, we identified the AgrA regulon, bringing molecular bases underlying the observed phenotypes. Together, our data showed the importance of AgrA in the opportunistic pathogenic behavior of S. lugdunensis allowing it to be considered as an interesting therapeutic target.
Asunto(s)
Proteínas Bacterianas/metabolismo , Biopelículas , Infecciones Estafilocócicas/microbiología , Staphylococcus lugdunensis/fisiología , Staphylococcus lugdunensis/patogenicidad , Animales , Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica , Humanos , Peróxido de Hidrógeno/farmacología , Masculino , Ratones , Ratones Endogámicos BALB C , Staphylococcus lugdunensis/efectos de los fármacos , Staphylococcus lugdunensis/genética , VirulenciaRESUMEN
During the infectious process, pathogens such as Staphylococcus lugdunensis have to cope with the condition of host-induced iron-limitation. Using the RNAseq approach, we performed the first global transcriptomic analysis of S. lugdunensis cells incubated in the absence and presence of iron chelator. One hundred and seventy-five genes were identified as members of the iron-limitation stimulon (127 up- and 48 downregulated). Six gene clusters known or likely required for the acquisition of iron have been identified. Among them, a novel Energy-Coupling Factor type transporter (ECF), homologous to the lhaSTA operon, has been found into a 13-gene putative operon and strongly overexpressed under iron-limitation condition. Moreover, the transcription of genes involved in resistance to oxidative stress (including catalase), virulence, transcriptional regulation, and hemin detoxification were also modified. These data provide some answers on the cellular response to the iron-limitation stress that is important for the opportunistic behavior of this pathogen.
Asunto(s)
Perfilación de la Expresión Génica , Hierro/metabolismo , Staphylococcus lugdunensis/genética , Regulación Bacteriana de la Expresión Génica , Familia de Multigenes , Staphylococcus lugdunensis/metabolismo , Staphylococcus lugdunensis/patogenicidadRESUMEN
BACKGROUND: Staphylococcus lugdunensis is a coagulase-negative Staphylococcus part of the commensal skin flora but emerge as an important opportunistic pathogen. Because iron limitation is a crucial stress during infectious process, we performed phenotypic study and compared proteomic profiles of this species incubated in absence and in presence of the iron chelator 2,2'-dipyridyl (DIP). RESULTS: No modification of cell morphology nor cell wall thickness were observed in presence of DIP. However iron-limitation condition promoted biofilm formation and reduced the ability to cope with oxidative stress (1 mM H2O2). In addition, S. lugdunensis N920143 cultured with DIP was significantly less virulent in the larvae of Galleria mellonella model of infection than that grown under standard conditions. We verified that these phenotypes were due to an iron limitation by complementation experiments with FeSO4. By mass spectrometry after trypsin digestion, we characterized the first iron-limitation stress proteome in S. lugdunensis. Among 1426 proteins identified, 349 polypeptides were differentially expressed. 222 were more and 127 less abundant in S. lugdunensis incubated in iron-limitation condition, and by RT-qPCR, some of the corresponding genes have been shown to be transcriptionally regulated. Our data revealed that proteins involved in iron metabolism and carriers were over-expressed, as well as several ABC transporters and polypeptides linked to cell wall metabolism. Conversely, enzymes playing a role in the oxidative stress response (especially catalase) were repressed. CONCLUSIONS: This phenotypic and global proteomic study allowed characterization of the response of S. lugdunensis to iron-limitation. We showed that iron-limitation promoted biofilm formation, but decrease the oxidative stress resistance that may, at least in part, explained the reduced virulence of S. lugdunensis observed under low iron condition.
Asunto(s)
Hierro/metabolismo , Fenotipo , Staphylococcus lugdunensis/genética , Humanos , Proteómica , Staphylococcus lugdunensis/metabolismo , Staphylococcus lugdunensis/patogenicidad , VirulenciaRESUMEN
The reality and intensity of antibiotic resistance in pathogenic bacteria calls for the rapid development of new antimicrobial drugs. In bacteria, trans-translation is the primary quality control mechanism for rescuing ribosomes arrested during translation. Because trans-translation is absent in eukaryotes but necessary to avoid ribosomal stalling and therefore essential for bacterial survival, it is a promising target either for novel antibiotics or for improving the activities of the protein synthesis inhibitors already in use. Oxadiazole derivatives display strong bactericidal activity against a large number of bacteria, but their effects on trans-translation were recently questioned. In this work, a series of new 1,3,4-oxadiazole derivatives and analogs were synthesized and assessed for their efficiency as antimicrobial agents against a wide range of gram-positive and gram-negative pathogenic strains. Despite the strong antimicrobial activity observed in these molecules, it turns out that they do not target trans-translation in vivo, but they definitely act on other cellular pathways.
Asunto(s)
Antibacterianos/farmacología , Oxadiazoles/farmacología , Antibacterianos/síntesis química , Antibacterianos/toxicidad , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Diseño de Fármacos , Sinergismo Farmacológico , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Grampositivas/efectos de los fármacos , Humanos , Pruebas de Sensibilidad Microbiana , Oxadiazoles/síntesis química , Oxadiazoles/toxicidadRESUMEN
OBJECTIVES: Ceftaroline and ceftobiprole are new parenteral cephalosporins with potent activity against methicillin-resistant (MR) staphylococci, which are the leading cause of prosthetic joint infections (PJIs). The aim of this study was to determine and compare the in vitro activities of both molecules against staphylococcal isolates recovered from clinically documented PJIs. METHODS: A collection of 200 non-duplicate clinical isolates [100 Staphylococcus aureus and 100 coagulase-negative staphylococci (CoNS), including 19 and 27 MR isolates, respectively] was studied. Minimum inhibitory concentrations (MICs) of oxacillin, ceftaroline, ceftobiprole, vancomycin, teicoplanin, clindamycin, levofloxacin, linezolid and daptomycin were determined by the broth microdilution method. Bactericidal activity (at 4× MIC) of ceftaroline, ceftobiprole, vancomycin, teicoplanin, linezolid and daptomycin was assessed by time-kill assay. RESULTS: Among the S. aureus isolates, 100% were susceptible to ceftaroline (MIC50/90, 0.25/0.5µg/mL) and 98% were susceptible to ceftobiprole (MIC50/90, 0.5/1µg/mL), regardless of their methicillin resistance. The two ceftobiprole-non-susceptible strains (including one MRSA) showed MICs at 4mg/L. Against CoNS isolates, ceftaroline and ceftobiprole exhibited in vitro potency with MIC50/90 values at 0.06/0.25µg/mL and 0.25/1µg/mL, respectively. At 4× MIC, ceftaroline and ceftobiprole showed rapid and marked bactericidal activity against both S. aureus and CoNS (after 24/12h and 12/6h of incubation, respectively), whilst none of the other molecules tested had a bactericidal effect by 24h. CONCLUSIONS: This study showed that ceftaroline and ceftobiprole have excellent in vitro activity against clinical isolates of staphylococci involved in PJIs. These molecules may therefore represent promising alternatives for the treatment of such infections.
Asunto(s)
Antibacterianos/farmacología , Cefalosporinas/farmacología , Artropatías/microbiología , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Infecciones Relacionadas con Prótesis/microbiología , Staphylococcus/efectos de los fármacos , Daptomicina/farmacología , Humanos , Staphylococcus aureus Resistente a Meticilina/aislamiento & purificación , Pruebas de Sensibilidad Microbiana , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/efectos de los fármacos , Vancomicina/farmacología , CeftarolinaRESUMEN
OBJECTIVES: Aims of this study were to: (i) evaluate whether the cluster membership could have an impact on hetero-resistance phenotype to colistin in the Enterobacter cloacae complex (ECC); and (ii) determine the genetic mechanism of colistin hetero-resistance in ECC. METHODS: A collection of 124 clinical isolates belonging to 13 clusters were used to analyse the hetero-resistance phenotype (MICs were determined using the broth microdilution method, Etest and population analysis profiling). Different mutants (ΔphoP, ΔphoQ, ΔphoPQ, ΔpmrA, ΔpmrB, ΔpmrAB, ΔarnE, ΔarnF and ΔarnBCADTEF) were constructed and tested for their colistin hetero-resistance phenotype. RESULTS: Based on broth microdilution and Etest results, it was shown that the hetero-resistance to colistin depended on the cluster: strains from clusters I, II, IV, VII, IX, X, XI and XII were usually hetero-resistant, whereas those from clusters III, V, VI, VIII and XIII were categorized as susceptible. However, for some cluster V and VIII strains, a small proportion (<10-7) of cells appeared resistant when tested by population analysis profiling. From a mechanistic point of view, analysis of mutants revealed that the mechanism of hetero-resistance was mainly due to the expression of the arn operon and the phoP/phoQ two-component regulatory system. CONCLUSIONS: Because the colistin hetero-resistance appeared cluster-dependent in the ECC, it should be advocated to determine the cluster of the strain associated with the infection in parallel with the MIC of colistin. The resistance mechanism may not be similar to other Enterobacteriaceae since only the two-component regulatory system PhoP/PhoQ (and not PmrA/PmrB) seemed to play a role in resistance regulation.
Asunto(s)
Antibacterianos/farmacología , Colistina/farmacología , Farmacorresistencia Bacteriana , Enterobacter cloacae/efectos de los fármacos , Enterobacter cloacae/genética , Enterobacter cloacae/clasificación , Enterobacter cloacae/aislamiento & purificación , Infecciones por Enterobacteriaceae/microbiología , Eliminación de Gen , Genes Bacterianos , Genotipo , Humanos , Pruebas de Sensibilidad MicrobianaRESUMEN
In Gram-negative bacteria, the active efflux is an important mechanism of antimicrobial resistance, but little is known about theEnterobacter cloacaecomplex (ECC). It is mediated primarily by pumps belonging to the RND (resistance-nodulation-cell division) family, and only AcrB, part of the AcrAB-TolC tripartite system, was characterized in ECC. However, detailed genome sequence analysis of the strainE. cloacaesubsp.cloacaeATCC 13047 revealed to us that 10 other genes putatively coded for RND-type transporters. We then characterized the role of all of these candidates by construction of corresponding deletion mutants, which were tested for their antimicrobial susceptibility to 36 compounds, their virulence in the invertebrateGalleria mellonellamodel of infection, and their ability to form biofilm. Only the ΔacrBmutant displayed significantly different phenotypes compared to that of the wild-type strain: 4- to 32-fold decrease of MICs of several antibiotics, antiseptics, and dyes, increased production of biofilm, and attenuated virulence inG. mellonella In order to identify specific substrates of each pump, we individually expressed intransall operons containing an RND pump-encoding gene into the ΔacrBhypersusceptible strain. We showed that three other RND-type efflux systems (ECL_00053-00055, ECL_01758-01759, and ECL_02124-02125) were able to partially restore the wild-type phenotype and to superadd to and even enlarge the broad range of antimicrobial resistance. This is the first global study assessing the role of all RND efflux pumps chromosomally encoded by the ECC, which confirms the major role of AcrB in both pathogenicity and resistance and the potential involvement of other RND-type members in acquired resistance.
Asunto(s)
Biopelículas/efectos de los fármacos , Farmacorresistencia Bacteriana Múltiple/genética , Enterobacter cloacae/genética , Regulación Bacteriana de la Expresión Génica , Genoma Bacteriano , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Animales , Antibacterianos/farmacología , Antiinfecciosos Locales/farmacología , Biopelículas/crecimiento & desarrollo , Mapeo Cromosómico , Colorantes/farmacología , Enterobacter cloacae/efectos de los fármacos , Enterobacter cloacae/metabolismo , Enterobacter cloacae/patogenicidad , Eliminación de Gen , Larva/microbiología , Pruebas de Sensibilidad Microbiana , Mariposas Nocturnas/microbiología , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , VirulenciaRESUMEN
Oxidative stress serves as an important host/environmental signal that triggers a wide range of responses in microorganisms. Here, we identified an oxidative stress sensor and response regulator in the important multidrug-resistant nosocomial pathogen Enterococcus faecium belonging to the MarR family and called AsrR (antibiotic and stress response regulator). The AsrR regulator used cysteine oxidation to sense the hydrogen peroxide which results in its dissociation to promoter DNA. Transcriptome analysis showed that the AsrR regulon was composed of 181 genes, including representing functionally diverse groups involved in pathogenesis, antibiotic and antimicrobial peptide resistance, oxidative stress, and adaptive responses. Consistent with the upregulated expression of the pbp5 gene, encoding a low-affinity penicillin-binding protein, the asrR null mutant was found to be more resistant to ß-lactam antibiotics. Deletion of asrR markedly decreased the bactericidal activity of ampicillin and vancomycin, which are both commonly used to treat infections due to enterococci, and also led to over-expression of two major adhesins, acm and ecbA, which resulted in enhanced in vitro adhesion to human intestinal cells. Additional pathogenic traits were also reinforced in the asrR null mutant including greater capacity than the parental strain to form biofilm in vitro and greater persistance in Galleria mellonella colonization and mouse systemic infection models. Despite overexpression of oxidative stress-response genes, deletion of asrR was associated with a decreased oxidative stress resistance in vitro, which correlated with a reduced resistance to phagocytic killing by murine macrophages. Interestingly, both strains showed similar amounts of intracellular reactive oxygen species. Finally, we observed a mutator phenotype and enhanced DNA transfer frequencies in the asrR deleted strain. These data indicate that AsrR plays a major role in antimicrobial resistance and adaptation for survival within the host, thereby contributes importantly to the opportunistic traits of E. faecium.
Asunto(s)
Proteínas Bacterianas/metabolismo , Enterococcus faecium/patogenicidad , Infecciones por Bacterias Grampositivas/metabolismo , Factores de Transcripción/metabolismo , Resistencia betalactámica , Animales , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Enterococcus faecium/genética , Enterococcus faecium/metabolismo , Infecciones por Bacterias Grampositivas/tratamiento farmacológico , Infecciones por Bacterias Grampositivas/genética , Humanos , Peróxido de Hidrógeno/farmacología , Macrófagos Peritoneales/metabolismo , Macrófagos Peritoneales/microbiología , Masculino , Ratones , Ratones Endogámicos BALB C , Oxidantes/farmacología , Oxidación-Reducción/efectos de los fármacos , Carácter Cuantitativo Heredable , Factores de Transcripción/genética , beta-Lactamas/farmacologíaRESUMEN
We compared the propensities of Enterococcus faecalis JH2-2 and of the recombination-deficient JH2-2 recA strain to develop mutational resistance to linezolid. In both organisms, a mutation in a single rrl copy conferred resistance to linezolid. Delay in acquisition of the mutation by other rrl copies in JH2-2 recA showed that gene conversion contributed to the acquisition of resistance.
Asunto(s)
Acetamidas/farmacología , Antibacterianos/farmacología , Enterococcus faecalis/efectos de los fármacos , Enterococcus faecalis/genética , Oxazolidinonas/farmacología , Farmacorresistencia Bacteriana/genética , Linezolid , Pruebas de Sensibilidad Microbiana , MutaciónRESUMEN
The genetic basis of erythromycin resistance in Turicella otitidis, a coryneform bacteria associated with otitis, was studied in five macrolide-resistant clinical isolates. Macrolide resistance genes were searched for by polymerase chain reaction (PCR). Genes for domain V of 23S rRNA (rrl) as well as rplD (L4 protein) and rplV (L22 protein) genes were characterised, amplified by PCR from total genomic DNA and sequenced. In the resistant isolates, cross-resistance to macrolides and clindamycin was associated with mutations at positions 2058 and/or 2059 (Escherichia coli numbering). Three isolates displayed A2058 mutations, one isolate had an A2059G mutation whereas another one contained mutations at positions 2058 and 2059. Southern blot experiments revealed that T. otitidis had three copies of the rrl gene. In conclusion, resistance to macrolides in T. otitidis is due, at least in part, to mutations in the rrl gene.
Asunto(s)
Sustitución de Aminoácidos , Infecciones por Bifidobacteriales/microbiología , Bifidobacterium/efectos de los fármacos , Bifidobacterium/genética , Farmacorresistencia Bacteriana Múltiple/genética , Macrólidos/farmacología , ARN Ribosómico 23S/genética , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Bifidobacterium/aislamiento & purificación , Clindamicina/farmacología , ADN Bacteriano/análisis , ADN Bacteriano/genética , Dosificación de Gen , Humanos , Proteínas Ribosómicas/genética , Análisis de Secuencia de ADNRESUMEN
Shigella sonnei UCN59, isolated during an outbreak of S. sonnei in January 2007, was resistant to azithromycin (MIC 64 mg/L). The isolate contained a plasmid-borne mph(A) gene encoding a macrolide 2 -phosphotransferase that inactivates macrolides. Emergence of the mph(A) gene in S. sonnei may limit usefulness of azithromycin for treatment of shigellosis.
Asunto(s)
Antibacterianos/farmacología , Farmacorresistencia Bacteriana Múltiple , Macrólidos/farmacología , Shigella sonnei/efectos de los fármacos , Preescolar , Brotes de Enfermedades , Disentería Bacilar/microbiología , Electroforesis en Gel de Campo Pulsado , Femenino , Humanos , Filogenia , Reacción en Cadena de la PolimerasaRESUMEN
In staphylococci, inducible macrolide-lincosamide-streptogramin B (MLS(B)) resistance is conferred by the erm(C) or erm(A) gene. This phenotype is characterized by the erythromycin-clindamycin "D-zone" test. Although clindamycin appears active in vitro, exposure of MLS(B)-inducible Staphylococcus aureus to this antibiotic may result in the selection of clindamycin-resistant mutants, either in vitro or in vivo. We have compared the frequencies of mutation to clindamycin resistance for 28 isolates of S. aureus inducibly resistant to erythromycin and bearing the erm(C) (n = 18) or erm(A) (n = 10) gene. Seven isolates susceptible to erythromycin or bearing the msr(A) gene (efflux) were used as controls. The frequencies of mutation to clindamycin resistance for the erm(A) isolates (mean +/- standard deviation, 3.4 x 10(-8) +/- 2.4 x 10(-8)) were only slightly higher than those for the controls (1.1 x 10(-8) +/- 6.4 x 10(-9)). By contrast, erm(C) isolates displayed a mean frequency of mutation to clindamycin resistance (4.7 x 10(-7) +/- 5.5 x 10(-7)) 14-fold higher than that of the S. aureus isolates with erm(A). The difference was also observed, although to a lower extent, when erm(C) and erm(A) were cloned into S. aureus RN4220. We conclude that erm(C) and erm(A) have different genetic potentials for selection of clindamycin-resistant mutants. By the disk diffusion method, erm(C) and erm(A) isolates could be distinguished on the basis of high- and low-level resistance to oleandomycin, respectively.
Asunto(s)
Antibacterianos/farmacología , Proteínas Bacterianas/genética , Clindamicina/farmacología , Farmacorresistencia Bacteriana/genética , Metiltransferasas/genética , Mutación , Selección Genética , Staphylococcus aureus/genética , ADN Bacteriano/genética , Macrólidos/farmacología , Análisis de Secuencia de ADN , Staphylococcus aureus/efectos de los fármacos , Estreptogramina Grupo B/farmacologíaRESUMEN
A gene encoding a putative peptidoglycan hydrolase was identified by sequence similarity searching in the Clostridium difficile 630 genome sequence, and the corresponding protein, named Acd (autolysin of C. difficile) was expressed in Escherichia coli. The deduced amino acid sequence of Acd shows a modular structure with two main domains: an N-terminal domain exhibiting repeated sequences and a C-terminal catalytic domain. The C-terminal domain exhibits sequence similarity with the glucosaminidase domains of Staphylococcus aureus Atl and Bacillus subtilis LytD autolysins. Purified recombinant Acd produced in E. coli was confirmed to be a cell-wall hydrolase with lytic activity on the peptidoglycan of several Gram-positive bacteria, including C. difficile. The hydrolytic specificity of Acd was studied by RP-HPLC analysis and MALDI-TOF MS using B. subtilis cell-wall extracts. Muropeptides generated by Acd hydrolysis demonstrated that Acd hydrolyses peptidoglycan bonds between N-acetylglucosamine and N-acetylmuramic acid, confirming that Acd is an N-acetylglucosaminidase. The transcription of the acd gene increased during vegetative cellular growth of C. difficile 630. The sequence of the acd gene appears highly conserved in C. difficile strains. Regarding deduced amino acid sequences, the C-terminal domain with enzymic function appears to be the most conserved of the two main domains. Acd is the first known autolysin involved in peptidoglycan hydrolysis of C. difficile.
Asunto(s)
Acetilglucosaminidasa/metabolismo , Proteínas Bacterianas/genética , Clostridioides difficile/enzimología , Hidrolasas/metabolismo , N-Acetil Muramoil-L-Alanina Amidasa/metabolismo , Acetilglucosaminidasa/química , Acetilglucosaminidasa/genética , Proteínas Bacterianas/biosíntesis , Proteínas Bacterianas/aislamiento & purificación , Bacteriólisis , Clostridioides difficile/genética , Clostridioides difficile/fisiología , Genoma Bacteriano , Hidrolasas/química , Datos de Secuencia Molecular , Peptidoglicano/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización DesorciónRESUMEN
A multiplex PCR toxigenic culture approach was designed for simultaneous identification and toxigenic type characterization of Clostridium difficile isolates. Three pairs of primers were designed for the amplification of (i) a species-specific internal fragment of the tpi (triose phosphate isomerase) gene, (ii) an internal fragment of the tcdB (toxin B) gene, and (iii) an internal fragment of the tcdA (toxin A) gene allowing distinction between toxin A-positive, toxin B-positive (A+B+) strains and toxin A-negative, toxin B-positive (A-B+) variant strains. The reliability of the multiplex PCR was established by using a panel of 72 C. difficile strains including A+B+, A-B-, and A-B+ toxigenic types and 11 other Clostridium species type strains. The multiplex PCR assay was then included in a toxigenic culture approach for the detection, identification, and toxigenic type characterization of C. difficile in 1,343 consecutive human and animal stool samples. Overall, 111 (15.4%) of 721 human samples were positive for C. difficile; 67 (60.4%) of these samples contained A+B+ toxigenic isolates, and none of them contained A-B+ variant strains. Fifty (8%) of 622 animal samples contained C. difficile strains, which were toxigenic in 27 (54%) cases, including 1 A-B+ variant isolate. Eighty of the 721 human stool samples (37 positive and 43 negative for C. difficile culture) were comparatively tested by Premier Toxins A&B (Meridian Bioscience) and Triage C. difficile Panel (Biosite) immunoassays, the results of which were found concordant with toxigenic culture for 82.5 and 92.5% of the samples, respectively. The multiplex PCR toxigenic culture scheme described here allows combined diagnosis and toxigenic type characterization for human and animal C. difficile intestinal infections.
Asunto(s)
Proteínas Bacterianas/genética , Toxinas Bacterianas/genética , Clostridioides difficile/clasificación , Clostridioides difficile/aislamiento & purificación , Enterocolitis Seudomembranosa/diagnóstico , Enterotoxinas/genética , Triosa-Fosfato Isomerasa/genética , Animales , Clostridioides difficile/genética , Medios de Cultivo , Enterocolitis Seudomembranosa/microbiología , Heces/microbiología , Humanos , Reacción en Cadena de la PolimerasaRESUMEN
A multilocus sequence typing (MLST) scheme was developed to study the genetic relationships and population structure of 72 Clostridium difficile isolates from various hosts, geographic sources, PCR ribotypes, and toxigenic types (determined by PCR targeting tcdA and tcdB genes). MLST was performed by DNA sequence analysis of seven housekeeping genes (aroE, ddl, dutA, tpi, recA, gmk, and sodA). The number of alleles ranged from five (dutA and ddl) to eleven (recA). Allelic profiles allowed the definition of 34 different sequence types (STs). These STs lacked correlation with geographic source but were well correlated to toxigenic type. The dendrogram generated from a matrix of pairwise genetic distances showed that animal isolates did not constitute a distinct lineage from human isolates and that there was no hypervirulent lineage within the population of toxigenic human isolates (isolates recovered from pseudomembranous colitis and antibiotic-associated diarrhea did not cluster in distinct lineages). However, A(-) B(+) variant isolates shared the same ST that appeared as a divergent lineage in the population studied, indicating a single evolutionary origin. The population structure was further examined by analysis of allelic polymorphism. The dendrogram generated from composite sequence-based analysis revealed a homogeneous population associated with three divergent lineages, one of which was restricted to A(-) B(+) variant isolates. C. difficile exhibited a clonal population structure, as revealed by the estimation of linkage disequilibrium (Ia) between loci. The analysis of alleles within clonal complexes estimated that point mutation generated new alleles at a frequency eightfold higher than recombinational exchange, and the congruence of the dendrograms generated from separate housekeeping loci confirmed the mutational evolution of this species.
Asunto(s)
Técnicas de Tipificación Bacteriana/métodos , Clostridioides difficile/clasificación , Análisis de Secuencia de ADN , Alelos , Animales , Secuencia de Bases , Evolución Biológica , Clostridioides difficile/genética , Humanos , Datos de Secuencia Molecular , Mutación , Recombinación GenéticaRESUMEN
Housekeeping genes encoding metabolic enzymes may provide alternative markers to 16S ribosomal DNA (rDNA) for genotypic and phylogenetic characterization of bacterial species. We have developed a PCR-restriction fragment length polymorphism (PCR-RFLP) assay, targeting the triosephosphate isomerase (tpi) gene, which allows the differentiation of twelve pathogenic Clostridium species. Degenerate primers constructed from alignments of tpi sequences of various gram-positive bacteria allowed the amplification of a 501 bp target region in the twelve Clostridium type strains. A phylogenetic tree constructed from the nucleotidic sequences of these tpi amplicons was well correlated with that inferred from analysis of 16S rDNA gene sequences. The analysis of tpi sequences revealed restriction sites of enzyme AluI that could be species-specific. Indeed, AluI digestion of amplicons from the twelve type strains provided distinct restriction patterns. A total of 127 strains (three to sixteen strains for each species) was further analyzed by PCR-RFLP of the tpi gene, and confirmed that each species could be characterized by one to three restriction types (RTs). The differences between RTs within species could be explained by point mutations in AluI restriction sites of the tpi sequences. PCR-restriction analysis of the tpi gene offers an accurate tool for species identification within the genus Clostridium, and provides an alternative marker to 16S rDNA for phylogenetic analyses.