RESUMEN
The purpose of this experiment was to investigate the effects of Hot Water Extract of Juncao-substrate Ganoderma lucidum Residue (HWE-JGLR) on the immune function and intestinal health of yellow-feather broilers. In an animal feeding experiment, 288 male yellow-feather broilers (1 day old) were randomly allocated to four treatment groups with six replicates of 12 birds each. The control (CON) group was fed a basal diet. HJ-1, HJ-2, and HJ-3 were fed a basal diet supplemented with 0.25%, 0.50%, and 1.00% HWE-JGLR, respectively. The feeding trial lasted for 63 d. The results showed increased ADFI (p = 0.033) and ADG (p = 0.045) of broilers in HJ-3, compared with the CON group. Moreover, higher contents of serum IL-4 and IL-10 and gene expression of IL-4 and IL-10 in jejunum mucosa and lower contents of serum IL-1ß and gene expression of IL-1ß in jejunum mucosa in HJ-3 were observed (p < 0.05). Additionally, the jejunal mucosal gene expression of Claudin-1 and ZO-1 in HJ-2 and HJ-3 was higher than that in the CON group (p < 0.05). As for the microbial community, compared with the CON group, the ACE index, Shannon index, and Shannoneven index of cecal microorganisms in HJ-2 and HJ-3 were elevated (p < 0.05). PCoA analysis showed that the cecal microbial structure of broilers in HJ-2 and HJ-3 was different from the CON group (p < 0.05). In contrast with the CON group, the broilers in HJ-2 and HJ-3 possessed more abundant Desulfobacterota at the phylum level and unclassified Lachnospiraceae, norank Clostridia vadinBB60 group and Blautia spp. at the genus level, while Turicibacter spp. and Romboutsia spp. were less (p < 0.05). In conclusion, dietary supplementation with HWE-JGLR can improve growth performance, enhance body immunity and intestinal development, and maintain the cecum microflora balance of yellow-feather broilers.
RESUMEN
RATIONALE: The newly emerging synthetic cannabinoids (SCs) 5F-EDMB-PICA, CUMYL-PEGACLONE, and NM-2201 have been observed to produce effects by activating cannabinoid type 1 (CB1) receptors. Nevertheless, the pharmacological effects and potential for abuse of these three substances remain to be studied. These substances have yet to be regulated in many countries. OBJECTIVES: We investigated the safety, pharmacological effects, rewarding effects, and cannabinoid withdrawal of 5F-EDMB-PICA, CUMYL-PEGACLONE, and NM-2201. METHODS: This study evaluated the drug safety and the cannabinoid-specific pharmacological effects of the three substances through acute toxicity experiments (in which the LD50 of each substance was obtained) and tetrad experiments (comprising assessments of hypothermia, analgesia, locomotion inhibition, and catalepsy). Furthermore, the conditioned place preference (CPP) experiments and withdrawal experiments were conducted to evaluate the rewarding effect and cannabinoid withdrawal potential of the substances in question. RESULTS: The results demonstrated that all three drugs exhibited certain acute toxic effects and could potentially induce tetrad effects. The data were analyzed using non-linear regression, and the corresponding ED50 values and 95% confidence intervals (CI) were obtained. The rank order of potency was determined to be CUMYL-PEGACLONE > 5F-EDMB-PICA > NM-2201. In the CPP experiments, it was demonstrated that 5F-EDMB-PICA significantly induced an increase in CPP score at a dose of 0.3 mg/kg, while NM-2201 caused an increase in CPP score and a significant aversion effect at a dose of 2 and 3 mg/kg, respectively. It is noteworthy that all three types of SCs were observed to produce a significant biphasic effect, indicating that CPP scores were biphasic for all compounds. Following the administration of the CB1 receptor antagonist rimonabant, a notable increase in head twitches and paw tremors was observed, indicating that these three SCs induce cannabinoid withdrawal through the mediation of CB1 receptors. CONCLUSIONS: The results of this study indicated that these SCs possess cannabinoid-specific pharmacological effects and abuse potential, which provides substantial experimental data to support the future regulation of these substances.
RESUMEN
Rapid and accurate characterization and quantitation of blood barbiturates and their combination drugs are very important for the clinical treatment of acute barbiturate poisoning. A comparison of dried blood spot (DBS) and traditional liquid-liquid extraction (LLE) in the pre-treatment stage, as well as a comparison of gas chromatography-mass spectrometry (GC-MS), gas chromatography-tandem mass spectrometry (GC-MS/MS), and liquid chromatography-tandem mass spectrometry (LC-MS/MS) as instrumental analysis methods, revealed differences in the analysis results of barbiturates and their combination drugs under different conditions. Based on these findings, we introduce a DBS-GC-MS/MS method. The developed and validated method showed good selectivity, sensitivity (LOD: 0.1 µg mL-1, LOQ: 0.2 µg mL-1), linearity (R2>0.9992), trueness (<15 %, except for carbamazepine, at 29.4 %), and precision (<15 %). Recovery was also good for most target compounds, but significant matrix effects were evident. Compared with the LLE method, the DBS method has the benefits of easy sample collection, storage, and transport, as well as simple pre-treatment and reduced reagent and energy consumption. Compared to LC-MS/MS, GC-MS/MS requires no switching between positive and negative ion modes and uses the MRM detection mode, meaning that more information about the sample compounds can be obtained in less analysis time. Using actual sample analysis, we have demonstrated the advantages of the DBS-GC-MS/MS method for the qualitative and quantitative analysis of barbiturates and poisoning events due to combinations of these drugs. Comparison of the three instruments and the two treatment methods revealed their analysis characteristics. From the perspective of practical application, the broad practical value and advantages of DBS should be embraced in more applications, and future analytical laboratory development should continue to recognize GC-MS/MS as a useful supplement to LC-MS/MS.
RESUMEN
Chronic inflammation mediated by microglia is a cause of some neuroinflammatory diseases. TLR4, a natural immune receptor on microglia, plays an important role in the occurrence of inflammation and the process of diseases. TLR4 can be activated by a variety of ligands to trigger inflammatory responses, including endogenous ligands HMGB1, S100A8/9, Heme, and Fetuin-A. As ligands derived from the body itself, they have the ability to bind directly to TLR4 and can be used as inducers of aseptic inflammation. In the past 20 years, targeting ligands rather than receptors has become an emerging therapeutic strategy for the treatment of diseases, so understanding the relationship between microglia, TLR4, TLR4 ligands, and corresponding diseases may have new implications for the treatment of diseases. In the article, we will discuss the TLR4 and the endogenous substances that can activate the TLR4 signaling pathway and present literature support for their role in neuroinflammatory diseases.
RESUMEN
As a prescription drug, retinoic acid is listed as a banned cosmetic additive in the EU and China regulations. Currently, spectrophotometric methods, including thin-layer chromatography (TLC), high-performance liquid chromatography (HPLC), and HPLC-MS/MS, are commonly used for the determination of retinoic acid. As these conventional methods require complex pretreatment and are time-consuming, chemical derivatization combined with paper spray ionization mass spectrometry was developed for the fast detection of retinoic acid in cosmetics. N,N-dimethylpiperazine iodide (DMPI) was utilized as a derivatization reagent. Carboxylic acid in retinoic acid was derivatized to carry a positive charge and was subjected to mass spectrometry analysis. Results showed that compared with non-derivatized compounds, the detection limit was increased by about 50 times. The linearity in the range of 0.005-1 µg·mL-1 was good. The limit of detection (LOD) was 0.0013 µg·mL-1, and the limit of quantification (LOQ) was 0.0043 µg·mL-1. The recoveries of spiked samples were in the range of 95-105%, and the RSDs were below 5%. Derivatization and paper spray ionization MS render a quick, sensitive, and accurate method for the detection of retinoic acid in a complex matrix.
Asunto(s)
Cosméticos , Tretinoina , Tretinoina/análisis , Tretinoina/química , Cosméticos/química , Cosméticos/análisis , Límite de Detección , Papel , Cromatografía Líquida de Alta Presión/métodos , Espectrometría de Masas en Tándem/métodos , Espectrometría de Masas/métodosRESUMEN
Ganoderma lucidum polysaccharides (GLP) are the primary bioactive macromolecular compounds of Ganoderma lucidum, possessing antioxidant and immunomodulatory effects. Hot water extract of Juncao-substrate Ganoderma Lucidum residue (HWE-JGLR) is abundant in GLP. There are few research reports on the application of HWE-JGLR in animal husbandry. Therefore, this study aims to investigate the effects of HWE-JGLR supplementation on growth performance, serum biochemistry, the antioxidant function of serum and liver, and the intestinal microbiota of yellow-feathered broilers. The control group was fed a corn-soybean meal basal diet, while the HJ I, II, and III groups received diets supplemented with 0.25 %, 0.5 %, and 1 % of HWE-JGLR, respectively. Results showed that HWE-JGLR increased the serum HDL-C content and decreased the TG content in broilers. Moreover, HWE-JGLR enhanced the antioxidant function by the Keap1-Nrf2/ARE signaling pathway and the antioxidative enzyme in broilers. In addition, the cecum of the metagenomic analysis of 16S rRNA showed that the relative abundance of no-rank Ruminococcacea was increased in the HJ I group. Our findings indicate that HWE-JGLR has strong potential for development as a green feed additive based on its functions of lipid-lowering, antioxidation, and the modulation of gut microbiota composition.
RESUMEN
The ketamine (KET) and its analogs consumed by humans are becoming emerging contaminants (ECs), as they at present in surface waters after being carried through wastewater systems. Drugs in wastewater can be analyzed using the direct-injection method, a simple wastewater analysis (WWA) method that can provide objective, continuous and nearly to real-time findings. This article describes an ultra-high-pressure liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method for the simultaneous quantification and confirmation of seven KET-based ECs in wastewater by direct injection. After optimization of the UPLC-MS/MS and sample pretreatment conditions, the method was validated and applied to samples (n = 157) collected from several wastewater treatment plants (WWTPs) in southern China in which KET had the highest detection rate. The established direct-injection method was not only simple to perform but also had better sensitivity, shorter detection times, and analyzed more KET-based ECs than currently published methods, meeting the requirements for the monitoring and high-throughput analysis of common KET-based ECs. We also analyzed the fragmentation pathway of KET-based ECs to obtain product ion information on other unknown substances. Additional studies are needed to establish a comprehensive direct-injection screening method of ECs in wastewater on model-based assessment.
Asunto(s)
Monitoreo del Ambiente , Ketamina , Espectrometría de Masas en Tándem , Aguas Residuales , Contaminantes Químicos del Agua , Ketamina/análisis , Aguas Residuales/química , Aguas Residuales/análisis , Contaminantes Químicos del Agua/análisis , Espectrometría de Masas en Tándem/métodos , Monitoreo del Ambiente/métodos , Cromatografía Líquida de Alta Presión/métodos , ChinaRESUMEN
RATIONALE: Isobutyryl-carfentanyl is the most recently discovered fentanyl analogue with a chemical structure that is similar to that of carfentanyl. Its analogue, carfentanyl, is regarded as one of the most lethal drugs in the world, with a potency of 10,000 times that of morphine. Therefore, isobutyryl-carfentanyl may possess a comparably high potency and its harmful effects cannot be ignored. OBJECTIVES: This study was designed to assess the analgesic effect of isobutyryl-carfentanyl and the potential risks associated with its misuse. METHODS: In this study, we assessed the acute toxicity of isobutyryl-carfentanyl by up-and-down-procedure, the analgesic efficacy by hot-plate test, the abuse potential by conditioned place preference (CPP), drug self-administration, and drug discrimination tests, and compared it with fentanyl and carfentanyl. RESULTS: The estimated median lethal dose (LD50) of isobutyryl-carfentanyl administered were 175 mg/kg (intragastric administration, IG), 15.84 mg/kg (intraperitoneal injection, IP), 15.84 mg/kg (subcutaneous injection, SC), and 1.6 mg/kg (intravenous injection, IV), respectively. The 50% maximal analgesic effect (ED50) of isobutyryl-carfentanyl was determined to be 0.00319 mg/kg, with an analgesic potency 14 times that of fentanyl and 0.82 times that of carfentanyl. Isobutyryl-carfentanyl exhibited a significant positional preference at a minimum dose of 0.1 mg/kg, while fentanyl exhibited a significant positional preference at a minimum dose of 0.3 mg/kg. In the heroin (0.05 mg/kg/infusion) self-administration substitution experiment, isobutyryl-carfentanyl showed significant self-administration behaviour at doses of 0.0005-0.001 mg/kg/infusion, with the maximum number of infusions observed at a dose of 0.001 mg/kg. In the heroin (1 mg/kg) drug discrimination experiment, fentanyl (0.005-0.02 mg/kg), carfentanyl (0.0005-0.002 mg/kg), and isobutyryl-carfentanyl (0.001-0.005 mg/kg) were tested in the dose-effect curves. The results showed that all three drugs exhibit dose-dependent increase in the number of drug-associated nose pokes responses and reduction in the rate of nose pokes. The subjective effect potency of isobutyryl-carfentanyl was found to be 4.4 times that of fentanyl and 0.5 times that of carfentanyl. CONCLUSIONS: In summary, isobutyryl-carfentanyl has high acute toxicity and analgesic effect, with strong psychological dependence approximately 5 times that of fentanyl and 0.5 times that of carfentanyl, and has extremely high abuse potency.
RESUMEN
α-Amanitin and ß-amanitin, two of the most toxic amatoxin compounds, typically coexist in the majority of Amanita mushrooms. The aim of this study was to use a newly developed ultra-performance liquid chromatography-mass spectrometry (UPLC-MS/MS) method to determine the toxicokinetics and tissue distribution of α- and ß-amanitin following single or combined oral (po) administration in mice. α-Amanitin and ß-amanitin administered at 2 or 10 mg/kg doses showed similar toxicokinetic profiles, except for peak concentration (Cmax). The elimination half-life (t1/2) values of α-amanitin and ß-amanitin in mice were 2.4-2.8 h and 2.5-2.7 h, respectively. Both α- and ß-amanitin were rapidly absorbed into the body, with times to reach peak concentration (Tmax) between 1.0 and 1.5 h. Following single oral administration at 10 mg/kg, the Cmax was significantly lower for α-amanitin (91.1 µg/L) than for ß-amanitin (143.1 µg/L) (p < 0.05). The toxicokinetic parameters of α-amanitin, such as t1/2, mean residence time (MRT), and volume of distribution (Vz/F) and of ß-amanitin, such as Vz/F, were significantly different (p < 0.05) when combined administration was compared to single administration. Tissues collected at 24 h after po administration revealed decreasing tissue distributions for α- and ß-amanitin of intestine > stomach > kidney > lung > spleen > liver > heart. The substantial distribution of toxins in the kidney corresponds to the known target organs of amatoxin poisoning. The content in the stomach, liver, and kidney was significantly higher for of ß-amanitin than for α-amanitin at 24 h following oral administration of a 10 mg/kg dose. No significant difference was detected in the tissue distribution of either amatoxin following single or combined administration. After po administration, both amatoxins were primarily excreted through the feces. Our data suggest the possibility of differences in the toxicokinetics in patients poisoned by mushrooms containing both α- and ß-amanitin than containing a single amatoxin. Continuous monitoring of toxin concentrations in patients' blood and urine samples is necessary in clinical practice.
Asunto(s)
Alfa-Amanitina , Amanitinas , Toxicocinética , Animales , Alfa-Amanitina/farmacocinética , Alfa-Amanitina/toxicidad , Amanitinas/farmacocinética , Amanitinas/toxicidad , Ratones , Distribución Tisular , Administración Oral , Espectrometría de Masas en Tándem , Masculino , Semivida , Cromatografía Líquida de Alta PresiónRESUMEN
Concerns have been raised about synthetic cannabinoids (SCs), which are among the most often trafficked and used illegal substances. An analytical method that holds promise for determining illicit drug use in the general population is wastewater-based epidemiology (WBE). Unfortunately, the concentration of SCs in wastewater is often extremely low on account of their hydrophobic nature, thus presenting a significant obstacle to the accurate detection and quantification of SCs using WBE. In this study, we present novel magnetic nanomaterials as amphiphilic adsorbents for pretreatment of wastewater using magnetic solid phase extraction (MSPE). Polydopamine-modified Fe3O4 nanoparticles were used as the magnetic core and further functionalized with poly(divinylbenzene-N-vinylpyrrolidone). Coupled with UHPLC-MS/MS analysis, an analytical method to simultaneously detect nine SCs at trace-levels in wastewater was developed and validated, enriching 50 mL wastewater to 100 µL with limits of detection (LOD) being 0.005-0.5 ng L-1, limits of quantification (LOQ) being 0.01-1.0 ng L-1, recoveries ranging from 73.99 to 110.72%, and the intra- and inter-day precision's relative standard deviations less than 15%. In comparison to the time-consuming conventional column-based solid phase extraction, the entire MSPE procedure from sample pre-treatment to data acquisition could be finished in one hour, thus largely facilitating the WBE method for drug surveillance and control.
Asunto(s)
Cannabinoides , Indoles , Límite de Detección , Polímeros , Extracción en Fase Sólida , Espectrometría de Masas en Tándem , Aguas Residuales , Contaminantes Químicos del Agua , Indoles/química , Polímeros/química , Aguas Residuales/química , Aguas Residuales/análisis , Extracción en Fase Sólida/métodos , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/química , Espectrometría de Masas en Tándem/métodos , Cannabinoides/análisis , Cannabinoides/química , Nanopartículas de Magnetita/química , Cromatografía Líquida de Alta Presión/métodos , Pirrolidinonas/química , Pirrolidinonas/análisis , AdsorciónRESUMEN
Rheumatoid arthritis (RA) is a chronic autoimmune disease. Targeting NLRP3 inflammasome, specifically its interaction with NEK7 via the LRR domain of NLRP3, is a promising therapeutic strategy. Our research aimed to disrupt this interaction by focusing on the LRR domain. Through virtual screening, we identified five compounds with potent anti-inflammatory effects and ideal LRR binding affinity. Lead compound C878-1943 underwent structural optimization, yielding pyridoimidazole derivatives with different anti-inflammatory activities. Compound I-19 from the initial series effectively inhibited caspase-1 and IL-1ß release in an adjuvant-induced arthritis (AIA) rat model, significantly reducing joint swelling and spleen/thymus indices. To further enhance potency and extend in vivo half-life, a second series including II-8 was developed, demonstrating superior efficacy and longer half-life. Both I-19 and II-8 bind to the LRR domain, inhibiting NLRP3 inflammasome activation. These findings introduce novel small molecule inhibitors targeting the LRR domain of NLRP3 protein and disrupt NLRP3-NEK7 interaction, offering a novel approach for RA treatment.
Asunto(s)
Artritis Experimental , Artritis Reumatoide , Quinasas Relacionadas con NIMA , Proteína con Dominio Pirina 3 de la Familia NLR , Proteína con Dominio Pirina 3 de la Familia NLR/antagonistas & inhibidores , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Quinasas Relacionadas con NIMA/antagonistas & inhibidores , Quinasas Relacionadas con NIMA/metabolismo , Animales , Artritis Reumatoide/tratamiento farmacológico , Artritis Reumatoide/metabolismo , Humanos , Ratas , Artritis Experimental/tratamiento farmacológico , Descubrimiento de Drogas , Relación Estructura-Actividad , Masculino , Inflamasomas/metabolismo , Inflamasomas/antagonistas & inhibidores , Simulación del Acoplamiento Molecular , Antirreumáticos/farmacología , Antirreumáticos/química , Antirreumáticos/síntesis química , Antirreumáticos/uso terapéuticoRESUMEN
The NLRP3 inflammasome is a critical component of the innate immune system. The persistent abnormal activation of the NLRP3 inflammasome is implicated in numerous human diseases. Herein, sulfonamide-substituted tetrahydroquinoline derivative S-9 was identified as the most promising NLRP3 inhibitor, without obvious cytotoxicity. In vitro, S-9 inhibited the priming and activation stages of the NLRP3 inflammasome. Incidentally, we also observed that S-9 had inhibitory effects on the NLRC4 and AIM2 inflammasomes. To elucidate the multiple anti-inflammatory activities of S-9, photoaffinity probe P-2, which contained a photoaffinity label and a functional handle, was developed for target identification by chemical proteomics. We identified PKR as a novel target of S-9 in addition to NLRP3 by target fishing. Furthermore, S-9 exhibited a significant anti-neuroinflammatory effect in vivo. In summary, our findings show that S-9 is a promising lead compound targeting both PKR and NLRP3 that could emerge as a molecular tool for treating inflammasome-related diseases.
Asunto(s)
Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR , Quinolinas , Sulfonamidas , eIF-2 Quinasa , Proteína con Dominio Pirina 3 de la Familia NLR/antagonistas & inhibidores , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Quinolinas/farmacología , Quinolinas/química , Quinolinas/síntesis química , Inflamasomas/metabolismo , Inflamasomas/antagonistas & inhibidores , Humanos , Sulfonamidas/química , Sulfonamidas/farmacología , Sulfonamidas/síntesis química , eIF-2 Quinasa/antagonistas & inhibidores , eIF-2 Quinasa/metabolismo , Animales , Ratones , Ratones Endogámicos C57BL , Antiinflamatorios/farmacología , Antiinflamatorios/química , Antiinflamatorios/síntesis química , Relación Estructura-ActividadRESUMEN
As the adulteration of dietary supplements with synthetic drugs remains a prevalent issue, the inclusion of anti-obesity agents may pose health risks, potentially leading to central nervous system or cardiovascular diseases. However, surveillance studies on the use of anti-obesity agents by the Chinese population are limited. This study aims to establish an efficient and rapid hair pretreatment method using dispersive liquid-liquid microextraction (DLLME) combined with high-speed grinding and develop a sensitive and accurate analytical method employing ultra high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) for detecting 13 potential anti-obesity agents in hair samples. Herein, hair samples were washed sequentially with 0.1% sodium dodecyl sulfate (SDS), water and acetone, and then ground at high speed using 1â¯mL of an extraction solution (internal standard solution-n-butanol-1.2â¯mol/L Na2HPO4, pH10.0, 100:400:500, v/v/v for procaterol; internal standard solution-ethyl acetate-1.2â¯mol/L Na2HPO4, pH8.0, 100:300:600, v/v/v for other 12 anti-obesity agents) while simultaneously performing DLLME. The developed method successfully detected 13 anti-obesity agents within 11â¯min, including bambuterol, clenbuterol, ractopamine, clorprenaline, formoterol, salbutamol, terbutaline, procaterol, phentermine, bupropion, sibutramine, desmethyl sibutramine, and N,N-didesmethyl sibutramine, which improved the screening efficiency. The calibration curves exhibited good linearity of 0.025-5â¯ng/mg, achieving correlation coefficients of r ≥ 0.99. The lower limits of quantification (LLOQs) for the analytes were 0.025â¯ng/mg, demonstrating acceptable levels of accuracy and precision. Recovery rates ranged between 73.30% and 107.47% across the three concentrations of 0.075, 0.375, and 3.75â¯ng/mg. The validated method was successfully applied to 369 real cases and detected six analytes, including bambuterol, salbutamol, terbutaline, sibutramine, desmethyl sibutramine, and N,N-didesmethyl sibutramine. This method offers several advantages, including simple pretreatment, high extraction efficiency, rapid extraction, solvent economy, and pollution mitigation, making it highly suitable for large-scale surveillance of usage of added anti-obesity agents.
Asunto(s)
Fármacos Antiobesidad , Cabello , Microextracción en Fase Líquida , Espectrometría de Masas en Tándem , Espectrometría de Masas en Tándem/métodos , Fármacos Antiobesidad/análisis , Microextracción en Fase Líquida/métodos , Cromatografía Líquida de Alta Presión/métodos , Cabello/química , Humanos , Límite de Detección , Reproducibilidad de los ResultadosRESUMEN
Amino acid epimerization, a process of converting L-amino acids to D-amino acids, will lead to modification in the protein structure and, subsequently, its biological function. This modification causes no change in protein m/z and may be overlooked during protein analysis. Aspartic Acid Epimerization (AAE) is faster than other amino acids and could be accelerated by free radicals and peroxides. In this work, a novel and site-specific HPLC method using a chiral stationary phase for determining the AAE in the active site model peptide (AP) of Peroxiredoxin 2 has been developed and validated. The developed method showed good linearity (1 - 200⯵g/mL) and recoveries of the limit of quantification (LOQ), low, medium, and high concentrations were between 85% and 115%. The Kinetics of AAE in AP were studied using the developed method, and the results showed that when ascorbic acid and Cu2+ coexisted, the AP epimerized rapidly. The AAE extent increased with time and was positively correlated with hydrogen peroxide generation.
Asunto(s)
Ácido Aspártico , Dominio Catalítico , Peroxirredoxinas , Cromatografía Líquida de Alta Presión/métodos , Cinética , Peroxirredoxinas/química , Peroxirredoxinas/análisis , Ácido Aspártico/química , Ácido Aspártico/análisis , Péptidos/química , Péptidos/análisis , Estereoisomerismo , Peróxido de Hidrógeno/química , Ácido Ascórbico/química , Ácido Ascórbico/análisis , Límite de Detección , Cobre/químicaRESUMEN
Fentanyl, a critical component of opioid analgesics, poses a severe threat to public health, exacerbating the drug problem due to its potential fatality. Herein, we present two novel haptens designed with different attachment sites conjugated to keyhole limpet hemocyanin (KLH), aiming to develop an efficacious vaccine against fentanyl. KLH-Fent-1 demonstrated superior performance over KLH-Fent-2 in antibody titer, blood-brain distribution, and antinociceptive tests. Consequently, we immunized mice with KLH-Fent-1 to generate fentanyl-specific monoclonal antibodies (mAbs) using the hybridoma technique to compensate for the defects of active immunization in the treatment of opioid overdose and addiction. The mAb produced by hybridoma 9D5 exhibited the ability to recognize fentanyl and its analogs with a binding affinity of 10-10 M. Subsequently, we developed a human IgG1 chimeric mAb to improve the degree of humanization. Pre-treatment with murine and chimeric mAb significantly reduced the analgesic effect of fentanyl and altered its blood-brain biodistribution in vivo. Furthermore, in a mouse model of fentanyl-induced respiratory depression, the chimeric mAb effectively reversed respiratory depression promptly and maintained a certain level during the week. The development of high-affinity chimeric mAb gives support to combat the challenges of fentanyl misuse and its detrimental consequences. In conclusion, mAb passive immunization represents a viable strategy for addressing fentanyl addiction and overdose.
Asunto(s)
Analgésicos Opioides , Anticuerpos Monoclonales , Fentanilo , Hemocianinas , Fentanilo/inmunología , Animales , Analgésicos Opioides/farmacología , Anticuerpos Monoclonales/farmacología , Ratones , Hemocianinas/inmunología , Humanos , Ratones Endogámicos BALB C , Masculino , Insuficiencia Respiratoria/inducido químicamente , Insuficiencia Respiratoria/inmunología , Distribución Tisular , Femenino , Haptenos/inmunologíaRESUMEN
Gout is a metabolic arthritis caused by hyperuricemia. In recent years, the prevalence of gout has been increased significantly in China due to the improvement of the living standards, and gout has become another common metabolic disease following diabetes mellitus. Gout severely affects the health status and life quality of human. In order to monitor the near real-time prevalence of gout, a wastewater-based epidemiology (WBE) approach was carried out in 257 Chinese cities using febuxostat as the biomarker. Febuxostat in wastewater was measured by a LC-MS/MS method with satisfactory results of method validation. The average concentration of febuxostat in wastewater was 53.05 ± 31.76 ng/L, with the estimated per capita consumption of 124.40 ± 73.37 mg/day/1000 inhabitant. The calculated prevalence of febuxostat was 0.41 % ± 0.24 %, and the prevalence of gout was finally estimated to be 1.30 % ± 0.77 % (0.60 % to 2.11 %), which was nearly consistent with value of 1.10 % obtained from the Guideline for the diagnosis and management of hyperuricemia and gout in China (2019). The results indicated that the febuxostat-based WBE approach might be reasonable to assess the near real-time gout prevalence in China.
Asunto(s)
Gota , Hiperuricemia , Humanos , Hiperuricemia/epidemiología , Hiperuricemia/diagnóstico , Febuxostat/uso terapéutico , Monitoreo Epidemiológico Basado en Aguas Residuales , Prevalencia , Cromatografía Liquida , Aguas Residuales , Espectrometría de Masas en Tándem , Gota/epidemiología , Gota/diagnóstico , China/epidemiologíaRESUMEN
Diabetes mellitus, a metabolic disease characterized by hyperglycemia, has been witnessed as a rapidly escalating worldwide health crisis. China currently had 140.9 million diabetic population in 2021, which was the largest globally. DM has witnessed a significant surge in the past few decades, leading to an alarming rise in the overall burden caused by this disease. To monitor the near real-time DM prevalence and the consumption of first-line anti-diabetic drugs, a wastewater-based epidemiology (WBE) approach based on the back-calculation of metformin concentration was implemented in 237 cities in China. The quantitative analysis of metformin in wastewater was conducted by LC-MS/MS with satisfactory results of method validation. The average concentration of metformin in wastewater was 14.07 ± 13.16 µg/L, and the per capita consumption was 5.16 ± 2.08 mg/day/inh, ranging from 0.90 to 10.36 ± 4.63 mg/day/inh. The calculated metformin prevalence was found to be 0.52 % ± 0.28 %, and the final estimated DM prevalence was 11.33 % ± 4.99 %, which was nearly consistent with the result of the International Diabetes Federation survey of 9.98 %. The results suggested that metformin might be one of the suitable WBE biomarkers in DM monitoring and WBE strategy could potentially enable the estimation of DM prevalence in most of Chinese cities after reasonable correction of associated parameters.
Asunto(s)
Diabetes Mellitus , Metformina , Humanos , Ciudades/epidemiología , Aguas Residuales , Cromatografía Liquida , Prevalencia , Espectrometría de Masas en Tándem , Metformina/análisis , Diabetes Mellitus/epidemiología , China/epidemiologíaRESUMEN
Accurate quantitative analyses require standardized methods to control and improve the analytical process in the laboratory. The availability of urine reference materials (RMs) may offer a feasible option to improve the accuracy of urine analysis and to control matrix effects. This paper presents the complete process of the development of matrix RMs in urine, including sample preparation, homogeneity, and stability studies, as well as uncertainty assessment. A freeze-drying process was developed, and freeze-dried human and pig urine samples were prepared and verified to have comparable homogeneity to liquid samples and higher stability than liquid human, pig, and artificial urine samples at 4â or room temperature and under extreme conditions. A total of 21 authentic urine samples from August 2022 were measured with freeze-dried RMs and spiked urine samples, and the reliability of the quantification of the RMs was compared. The freeze-dried human urine matrix RM appeared to be an excellent tool for daily quality control, as it showed high stability and gave the most consistent results with spiked samples.
Asunto(s)
Manejo de Especímenes , Urinálisis , Humanos , Animales , Porcinos , Reproducibilidad de los Resultados , Estándares de Referencia , Detección de Abuso de SustanciasRESUMEN
A thorough understanding of the degradation of chemical biomarkers in wastewater after the sampling is critical in the surveillance of illicit drug use based on the back-calculation technique. Herein, three temperatures, eight groups of matrices, and acidification were applied to simulate the preservation condition of 21 illicit drugs, their metabolites, and cotinine for a 240-day stability study. It was proved that the temperature, matrices, and acidification play vital roles in their stability in wastewater. Most of them demonstrated high stability (transformation rates < 20%) during room temperature for 45 days, and the transformation rates decreased while the storage temperature reduced. The stability of the target compounds such as cocaine (COC), 6-monoacetylmorphine (6-MAM), and amphetamine (AM) is influenced by matrices. Acidification prevented the majority of analytes from transforming, making it a feasible solution for preservation after sampling. A model that combined the effects of temperature and matrix was developed to back-calculate the concentration of target compounds during the postsampling process. The feasibility of this model was validated by correcting the loss of COC and 6-MAM from 24.2% and 16.2% to 2.98% and 2.77%. This study simulated a typical large-scale sampling and storage scenario. The effect of the temperature, pH, and matrix on in-sample stability and the postsampling analysis of selected target compounds was investigated for the first time in this study.
Asunto(s)
Cocaína , Drogas Ilícitas , Contaminantes Químicos del Agua , Aguas Residuales , Drogas Ilícitas/análisis , Cotinina , Anfetamina/análisis , Cocaína/análisis , Contaminantes Químicos del Agua/análisisRESUMEN
BACKGROUND: The NLRP3 inflammasome is a vital player in the emergence of inflammation. The priming and activation of the NLRP3 inflammasome is a major trigger for inflammation which is a defense response against adverse stimuli. However, the excessive activation of the NLRP3 inflammasome can lead to the development of various inflammatory diseases. Cannabidiol, as the second-most abundant component in cannabis, has a variety of pharmacological properties, particularly anti-inflammation. Unlike tetrahydrocannabinol, cannabidiol has a lower affinity for cannabinoid receptors, which may be the reason why it is not psychoactive. Notably, the mechanism by which cannabidiol exerts its anti-inflammatory effect is still unclear. METHODS: We have performed a literature review based on published original and review articles encompassing the NLRP3 inflammasome and cannabidiol in inflammation from central databases, including PubMed and Web of Science. RESULTS AND CONCLUSIONS: In this review, we first summarize the composition and activation process of the NLRP3 inflammasome. Then, we list possible molecular mechanisms of action of cannabidiol. Next, we explain the role of the NLRP3 inflammasome and the anti-inflammatory effect of cannabidiol in inflammatory disorders. Finally, we emphasize the capacity of cannabidiol to suppress inflammation by blocking the NLRP3 signaling pathway, which indicates that cannabidiol is a quite promising anti-inflammatory compound.