Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Front Neurosci ; 17: 1167007, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37409104

RESUMEN

Introduction: Deprivation of normal vision early in postnatal development elicits modifications of neural circuitry within the primary visual pathway that can cause a severe and intractable vision impairment (amblyopia). In cats, amblyopia is often modeled with monocular deprivation (MD), a procedure that involves temporarily closing the lids of one eye. Following long-term MD, brief inactivation of the dominant eye's retina can promote recovery from the anatomical and physiological effects of MD. In consideration of retinal inactivation as a viable treatment for amblyopia it is imperative to compare its efficacy against conventional therapy, as well as assess the safety of its administration. Methods: In the current study we compared the respective efficacies of retinal inactivation and occlusion of the dominant eye (reverse occlusion) to elicit physiological recovery from a prior long-term MD in cats. Because deprivation of form vision has been associated with development of myopia, we also examined whether ocular axial length or refractive error were altered by a period of retinal inactivation. Results: The results of this study demonstrate that after a period of MD, inactivation of the dominant eye for up to 10 days elicited significant recovery of visually-evoked potentials that was superior to the recovery measured after a comparable duration of reverse occlusion. After monocular retinal inactivation, measurements of ocular axial length and refractive error were not significantly altered from their pre-inactivation values. The rate of body weight gain also was not changed during the period of inactivation, indicating that general well-being was not affected. Discussion: These results provide evidence that inactivation of the dominant eye after a period of amblyogenic rearing promotes better recovery than eye occlusion, and this recovery was achieved without development of form-deprivation myopia.

2.
Front Syst Neurosci ; 14: 32, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32587505

RESUMEN

In animal models, monocular deprivation (MD) by lid closure mimics the effects of unilateral amblyopia in humans. Temporary inactivation of one or both eyes with intraocular administration of tetrodotoxin (TTX) has recently been shown to promote recovery from the anatomical effects of MD at post-critical period ages when standard recovery strategies fail. In the current study, the retinae and optic nerves of animals subjected to 10 days of monocular retinal inactivation were assessed for pathological changes as a means of assessing the viability of this potential new amblyopia therapy. Retinal sections from both eyes were subjected to hematoxylin and eosin staining and were then examined for cell density and soma size in the ganglion cell layer (GCL). Sections of the optic nerve from each eye were examined for neurofilament protein, myelin, glial cell density, and glial fibrillary acidic protein (GFAP). Our study revealed no evidence of gross histopathological abnormalities following inactivation for 10 days, nor was there evidence of degeneration of axons or loss of myelin in the optic nerve serving inactivated eyes. On all measurements, the inactivated eye was indistinguishable from the fellow eye, and both were comparable to normal controls. We confirmed that our inactivation protocol obliterated visually-evoked potentials for 10 consecutive days, but visual responses were restored to normal after the effects of inactivation wore off. Notwithstanding the critical need for further assessment of ocular and retinal health following inactivation, these results provide evidence that retinal inactivation as a treatment for amblyopia does not produce significant retinal damage or degeneration.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA