Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Glob Chang Biol ; 30(6): e17374, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38863181

RESUMEN

In this Technical Advance, we describe a novel method to improve ecological interpretation of remotely sensed vegetation greenness measurements that involved sampling 24,395 Landsat pixels (30 m) across 639 km of Alaska's central Brooks Range. The method goes well beyond the spatial scale of traditional plot-based sampling and thereby more thoroughly relates ground-based observations to satellite measurements. Our example dataset illustrates that, along the boreal-Arctic boundary, vegetation with the greatest Landsat Normalized Difference Vegetation Index (NDVI) is taller than 1 m, woody, and deciduous; whereas vegetation with lower NDVI tends to be shorter, evergreen, or non-woody. The field methods and associated analyses advance efforts to inform satellite data with ground-based vegetation observations using field samples collected at spatial scales that closely match the resolution of remotely sensed imagery.


Asunto(s)
Imágenes Satelitales , Tundra , Alaska , Regiones Árticas , Tecnología de Sensores Remotos/métodos , Taiga , Monitoreo del Ambiente/métodos
2.
Science ; 383(6685): 877-884, 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38386760

RESUMEN

Climate-induced northward advance of boreal forest is expected to lessen albedo, alter carbon stocks, and replace tundra, but where and when this advance will occur remains largely unknown. Using data from 19 sites across 22 degrees of longitude along the tree line of northern Alaska, we show a stronger temporal correlation of tree ring growth with open water uncovered by retreating Arctic sea ice than with air temperature. Spatially, our results suggest that tree growth, recruitment, and range expansion are causally linked to open water through associated warmer temperatures, deeper snowpacks, and improved nutrient availability. We apply a meta-analysis to 82 circumarctic sites, finding that proportionally more tree lines have advanced where proximal to ongoing sea ice loss. Taken together, these findings underpin how and where changing sea ice conditions facilitate high-latitude forest advance.

3.
Ecol Evol ; 12(8): e9158, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35919394

RESUMEN

Abiotic and biotic factors structure species assembly in ecosystems both horizontally and vertically. However, the way community composition changes along comparable horizontal and vertical distances in complex three-dimensional habitats, and the factors driving these patterns, remains poorly understood. By sampling ant assemblages at comparable vertical and horizontal spatial scales in a tropical rainforest, we tested hypotheses that predicted differences in vertical and horizontal turnover explained by different drivers in vertical and horizontal space. These drivers included environmental filtering, such as microclimate (temperature, humidity, and photosynthetic photon flux density) and microhabitat connectivity (leaf area), which are structured differently across vertical and horizontal space. We found that both ant abundance and richness decreased significantly with increasing vertical height. Although the dissimilarity between ant assemblages increased with vertical distance, indicating a clear distance-decay pattern, the dissimilarity was higher horizontally where it appeared independent of distance. The pronounced horizontal and vertical structuring of ant assemblages across short distances is likely explained by a combination of microclimate and microhabitat connectivity. Our results demonstrate the importance of considering three-dimensional spatial variation in local assemblages and reveal how highly diverse communities can be supported by complex habitats.

4.
Nature ; 608(7923): 546-551, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35948635

RESUMEN

Unprecedented modern rates of warming are expected to advance boreal forest into Arctic tundra1, thereby reducing albedo2-4, altering carbon cycling4 and further changing climate1-4, yet the patterns and processes of this biome shift remain unclear5. Climate warming, required for previous boreal advances6-17, is not sufficient by itself for modern range expansion of conifers forming forest-tundra ecotones5,12-15,17-20. No high-latitude population of conifers, the dominant North American Arctic treeline taxon, has previously been documented5 advancing at rates following the last glacial maximum (LGM)6-8. Here we describe a population of white spruce (Picea glauca) advancing at post-LGM rates7 across an Arctic basin distant from established treelines and provide evidence of mechanisms sustaining the advance. The population doubles each decade, with exponential radial growth in the main stems of individual trees correlating positively with July air temperature. Lateral branches in adults and terminal leaders in large juveniles grow almost twice as fast as those at established treelines. We conclude that surpassing temperature thresholds1,6-17, together with winter winds facilitating long-distance dispersal, deeper snowpack and increased soil nutrient availability promoting recruitment and growth, provides sufficient conditions for boreal forest advance. These observations enable forecast modelling with important insights into the environmental conditions converting tundra into forest.


Asunto(s)
Calentamiento Global , Picea , Taiga , Temperatura , Árboles , Tundra , Aclimatación , Regiones Árticas , Modelos Climáticos , Calentamiento Global/estadística & datos numéricos , Modelos Biológicos , Picea/crecimiento & desarrollo , Picea/metabolismo , Estaciones del Año , Nieve , Suelo/química , Árboles/crecimiento & desarrollo , Árboles/metabolismo , Viento
5.
Ecol Evol ; 11(9): 4866-4873, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33976854

RESUMEN

We show that aerial tips are self-similar fractals of whole shrubs and present a field method that applies this fact to improves accuracy and precision of biomass estimates of tall-shrubs, defined here as those with diameter at root collar (DRC) ≥ 2.5 cm. Power function allometry of biomass to stem diameter generates a disproportionate prediction error that increases rapidly with diameter. Thus, biomass should be modeled as a single measure of stem diameter only if stem diameter is less than a threshold Dmax . When stem diameter exceeds Dmax , then the stem internode should be treated as a conic frustrum requiring two additional measures: a second, node-adjacent diameter and a length. If the second diameter is less than Dmax , then the power function allometry can be applied to the aerial tip; otherwise an additional internode is measured. This "two-component" allometry-internodes as frustra and aerial tips as shrubs-can reduce estimated biomass error propagated to the plot-level by as much as 50% or more where very large shrubs are present Dmax is any diameter such that the ratio of single-component to two-component uncertainty exceeds the ratio of two-component to single-component measurement time. Guidelines for estimating Dmax based on pilot field data are provided. Tall shrubs are increasing in abundance and distribution across Arctic, alpine, boreal, and dryland ecosystems. Estimating their biomass is important for both ecological studies and carbon accounting. Reducing field-sample prediction error increases precision in multi-stage modeling because additional measures efficiently improve plot-level biomass precision, reducing uncertainty for shrub biomass estimates.

6.
J Fish Biol ; 95(2): 647-650, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30963579

RESUMEN

Cross-contamination of epidermal mucus was assessed at three sampling locations on the bodies of Pacific halibut Hippoglossus stenolepis by inducing contact between fish coated with labelled synthetic mucus and non-treated fish. Results indicate a positive relationship between sampling site exposure and sample contamination and that mucous sample cross-contamination can be mitigated by sampling in a location protected from external contact.


Asunto(s)
Epidermis/química , Lenguado/fisiología , Moco/química , Manejo de Especímenes/veterinaria , Alaska , Aletas de Animales/química , Animales , Congelación , Sistema de la Línea Lateral/química , Manejo de Especímenes/métodos , Manejo de Especímenes/normas
7.
FEMS Microbiol Ecol ; 94(3)2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29346532

RESUMEN

Red-colored secondary pigments in glacier algae play an adaptive role in melting snow and ice. We advance this hypothesis using a model of color-based absorption of irradiance, an experiment with colored particles in snow, and the natural history of glacier algae. Carotenoids and phenols-astaxanthin in snow-algae and purpurogallin in ice-algae-shield photosynthetic apparatus by absorbing overabundant visible wavelengths, then dissipating the excess radiant energy as heat. This heat melts proximal ice crystals, providing liquid-water in a 0°C environment and freeing up nutrients bound in frozen water. We show that purple-colored particles transfer 87%-89% of solar energy absorbed by black particles. However, red-colored particles transfer nearly as much (85%-87%) by absorbing peak solar wavelengths and reflecting the visible wavelengths most absorbed by nearby ice and snow crystals; this latter process may reduce potential cellular overheating when snow insulates cells. Blue and green particles transfer only 80%-82% of black particle absorption. In the experiment, red-colored particles melted 87% as much snow as black particles, while blue particles melted 77%. Green-colored snow-algae naturally occupy saturated snow where water is non-limiting; red-colored snow-algae occupy drier, water-limited snow. In addition to increasing melt, we suggest that esterified astaxanthin in snow-alga cells increases hydrophobicity to remain surficial.


Asunto(s)
Carbono/análisis , Cubierta de Hielo/química , Chlorophyta/crecimiento & desarrollo , Chlorophyta/metabolismo , Color , Ecología , Congelación , Fotosíntesis , Nieve/química
8.
Microbes Environ ; 32(1): 32-39, 2017 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-28302989

RESUMEN

The community structure of bacteria associated with the glacier ice worm Mesenchytraeus solifugus was analyzed by amplicon sequencing of 16S rRNA genes and their transcripts. Ice worms were collected from two distinct glaciers in Alaska, Harding Icefield and Byron Glacier, and glacier surfaces were also sampled for comparison. Marked differences were observed in bacterial community structures between the ice worm and glacier surface samples. Several bacterial phylotypes were detected almost exclusively in the ice worms, and these bacteria were phylogenetically affiliated with either animal-associated lineages or, interestingly, clades mostly consisting of glacier-indigenous species. The former included bacteria that belong to Mollicutes, Chlamydiae, Rickettsiales, and Lachnospiraceae, while the latter included Arcicella and Herminiimonas phylotypes. Among these bacteria enriched in ice worm samples, Mollicutes, Arcicella, and Herminiimonas phylotypes were abundantly and consistently detected in the ice worm samples; these phylotypes constituted the core microbiota associated with the ice worm. A fluorescence in situ hybridization analysis showed that Arcicella cells specifically colonized the epidermis of the ice worms. Other bacterial phylotypes detected in the ice worm samples were also abundantly recovered from the respective habitat glaciers; these bacteria may be food for ice worms to digest or temporary residents. Nevertheless, some were overrepresented in the ice worm RNA samples; they may also function as facultative gut bacteria. Our results indicate that the community structure of bacteria associated with ice worms is distinct from that in the associated glacier and includes worm-specific and facultative, glacier-indigenous lineages.


Asunto(s)
Bacterias/clasificación , Bacterias/genética , Biota , Cubierta de Hielo/microbiología , Oligoquetos/microbiología , Alaska , Animales , Análisis por Conglomerados , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
9.
Glob Chang Biol ; 22(5): 1841-56, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26719133

RESUMEN

Tall shrubs and trees are advancing into many tundra and wetland ecosystems but at a rate that often falls short of that predicted due to climate change. For forest, tall shrub, and tundra ecosystems in two pristine mountain ranges of Alaska, we apply a Bayesian, error-propagated calculation of expected elevational rise (climate velocity), observed rise (biotic velocity), and their difference (biotic inertia). We show a sensitive dependence of climate velocity on lapse rate and derive biotic velocity as a rigid elevational shift. Ecosystem presence identified from recent and historic orthophotos ~50 years apart was regressed on elevation. Biotic velocity was estimated as the difference between critical point elevations of recent and historic logistic fits divided by time between imagery. For both mountain ranges, the 95% highest posterior density of climate velocity enclosed the posterior distributions of all biotic velocities. In the Kenai Mountains, mean tall shrub and climate velocities were both 2.8 m y(-1). In the better sampled Chugach Mountains, mean tundra retreat was 1.2 m y(-1) and climate velocity 1.3 m y(-1). In each mountain range, the posterior mode of tall woody vegetation velocity (the complement of tundra) matched climate velocity better than either forest or tall shrub alone, suggesting competitive compensation can be important. Forest velocity was consistently low at 0.1-1.1 m y(-1), indicating treeline is advancing slowly. We hypothesize that the high biotic inertia of forest ecosystems in south-central Alaska may be due to competition with tall shrubs and/or more complex climate controls on the elevational limits of trees than tall shrubs. Among tall shrubs, those that disperse farthest had lowest inertia. Finally, the rapid upward advance of woody vegetation may be contributing to regional declines in Dall's sheep (Ovis dalli), a poorly dispersing alpine specialist herbivore with substantial biotic inertia due to dispersal reluctance.


Asunto(s)
Altitud , Cambio Climático , Ecosistema , Alaska , Animales , Teorema de Bayes , Bosques , Estaciones del Año , Tundra
10.
FEMS Microbiol Ecol ; 91(3)2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25764456

RESUMEN

The glacier ice worm, Mesenchytraeus solifugus, is a unique annelid, inhabiting only snow and ice in North American glaciers. Here, we analyzed the taxonomic composition of bacteria associated with M. solifugus based on the 16S rRNA gene. We analyzed four fixed-on-site and 10 starved ice worm individuals, along with glacier surface samples. In total, 1341 clones of 16S rRNA genes were analyzed for the ice worm samples, from which 65 bacterial phylotypes (99.0% cut-off) were identified. Of these, 35 phylotypes were closely related to sequences obtained from their habitat glacier and/or other components of cryosphere; whereas three dominant phylotypes were affiliated with animal-associated lineages of the class Mollicutes. Among the three, phylotype Ms-13 shared less than 89% similarity with database sequences and was closest to a gut symbiont of a terrestrial earthworm. Using fluorescence in situ hybridization, Ms-13 was located on the gut wall surface of the ice worms. We propose a novel genus and species, 'Candidatus Vermiplasma glacialis', for this bacterium. Our results raise the possibility that the ice worm has exploited indigenous glacier bacteria, while several symbiotic bacterial lineages have maintained their association with the ice worm during the course of adaptive evolution to the permanently cold environment.


Asunto(s)
Anélidos/microbiología , Tracto Gastrointestinal/microbiología , Cubierta de Hielo/microbiología , Microbiota/genética , Tenericutes/clasificación , Tenericutes/genética , Animales , Secuencia de Bases , ADN Bacteriano/genética , Hibridación Fluorescente in Situ , Datos de Secuencia Molecular , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Tenericutes/aislamiento & purificación
11.
Genome Announc ; 1(2): e0009913, 2013 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-23516217

RESUMEN

Cold environments, such as glaciers, are large reservoirs of microbial life. The present study employed 16S rRNA gene amplicon metagenomic sequencing to survey the prokaryotic microbiota on Alaskan glacial ice, revealing a rich and diverse microbial community of some 2,500 species of bacteria and archaea.

12.
Mol Phylogenet Evol ; 63(3): 577-84, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22370043

RESUMEN

North American ice worms are the largest glacially-obligate metazoans, inhabiting coastal, temperate glaciers between southcentral Alaska and Oregon. We have collected ice worm specimens from 10 new populations, completing a broad survey throughout their geographic range. Phylogenetic analyses of 87 individuals using fragments of nuclear 18S rRNA, and mitochondrial 12S rRNA and cyctochrome c oxidase subunit 1 (CO1) identified 18 CO1 haplotypes with divergence values up to ~10%. Phylogeographic interpretations suggest a St. Elias Range, Alaskan ancestry from an aquatic mesenchytraeid oligochaete during the early-Pliocene. A gradual, northward expansion by active dispersal from the central St. Elias clade characterizes a northern clade that is confined to Alaska (with one exception on Vancouver Island, British Columbia), while a distinct southern clade representing worms from British Columbia, Washington and Oregon was likely founded by a passive dispersal event originating from a northern ancestor. The geographic boundary between central and southern clades coincides with an ice worm distribution gap located in southern Alaska, which appears to have restricted active gene flow throughout the species' evolutionary history.


Asunto(s)
Oligoquetos/genética , Animales , Teorema de Bayes , Canadá , Complejo IV de Transporte de Electrones/genética , Flujo Génico , Especiación Genética , Funciones de Verosimilitud , Modelos Genéticos , Filogenia , Filogeografía , ARN Ribosómico/genética , ARN Ribosómico 18S/genética , Estados Unidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA