Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Base de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
mBio ; 7(6)2016 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-27834206

RESUMEN

The local production of gamma interferon (IFN-γ) is important to control Toxoplasma gondii in the brain, but the basis for these protective effects is not fully understood. The studies presented here reveal that the ability of IFN-γ to inhibit parasite replication in astrocytes in vitro is dependent on signal transducer and activator of transcription 1 (STAT1) and that mice that specifically lack STAT1 in astrocytes are unable to limit parasite replication in the central nervous system (CNS). This susceptibility is associated with a loss of antimicrobial pathways and increased cyst formation in astrocytes. These results identify a critical role for astrocytes in limiting the replication of an important opportunistic pathogen. IMPORTANCE: Astrocytes are the most numerous cell type in the brain, and they are activated in response to many types of neuroinflammation, but their function in the control of CNS-specific infection is unclear. The parasite Toxoplasma gondii is one of the few clinically relevant microorganisms that naturally infects astrocytes, and the studies presented here establish that the ability of astrocytes to inhibit parasite replication is essential for the local control of this opportunistic pathogen. Together, these studies establish a key role for astrocytes as effector cells and in the coordination of many aspects of the protective immune response that operates in the brain.


Asunto(s)
Astrocitos/parasitología , Interferón gamma/inmunología , Factor de Transcripción STAT1/metabolismo , Toxoplasma/inmunología , Toxoplasmosis Animal/inmunología , Toxoplasmosis Animal/parasitología , Animales , Astrocitos/inmunología , Astrocitos/metabolismo , Encéfalo/inmunología , Encéfalo/parasitología , Células Cultivadas , Interferón gamma/metabolismo , Ratones , Factor de Transcripción STAT1/deficiencia , Factor de Transcripción STAT1/genética , Transducción de Señal
2.
PLoS Pathog ; 12(2): e1005447, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26895155

RESUMEN

Toxoplasma gondii, a common brain-tropic parasite, is capable of infecting most nucleated cells, including astrocytes and neurons, in vitro. Yet, in vivo, Toxoplasma is primarily found in neurons. In vitro data showing that interferon-γ-stimulated astrocytes, but not neurons, clear intracellular parasites suggest that neurons alone are persistently infected in vivo because they lack the ability to clear intracellular parasites. Here we test this theory by using a novel Toxoplasma-mouse model capable of marking and tracking host cells that directly interact with parasites, even if the interaction is transient. Remarkably, we find that Toxoplasma shows a strong predilection for interacting with neurons throughout CNS infection. This predilection remains in the setting of IFN-γ depletion; infection with parasites resistant to the major mechanism by which murine astrocytes clear parasites; or when directly injecting parasites into the brain. These findings, in combination with prior work, strongly suggest that neurons are not incidentally infected, but rather they are Toxoplasma's primary in vivo target.


Asunto(s)
Astrocitos/parasitología , Encéfalo/parasitología , Neuronas/parasitología , Toxoplasma , Toxoplasmosis/parasitología , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Interferón gamma/metabolismo , Espacio Intracelular/parasitología , Ratones
3.
J Immunol ; 193(1): 139-49, 2014 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-24860191

RESUMEN

The balance between controlling infection and limiting inflammation is particularly precarious in the brain because of its unique vulnerability to the toxic effects of inflammation. Astrocytes have been implicated as key regulators of neuroinflammation in CNS infections, including infection with Toxoplasma gondii, a protozoan parasite that naturally establishes a chronic CNS infection in mice and humans. In CNS toxoplasmosis, astrocytes are critical to controlling parasite growth. They secrete proinflammatory cytokines and physically encircle parasites. However, the molecular mechanisms used by astrocytes to limit neuroinflammation during toxoplasmic encephalitis have not yet been identified. TGF-ß signaling in astrocytes is of particular interest because TGF-ß is universally upregulated during CNS infection and serves master regulatory and primarily anti-inflammatory functions. We report in this study that TGF-ß signaling is activated in astrocytes during toxoplasmic encephalitis and that inhibition of astrocytic TGF-ß signaling increases immune cell infiltration, uncouples proinflammatory cytokine and chemokine production from CNS parasite burden, and increases neuronal injury. Remarkably, we show that the effects of inhibiting astrocytic TGF-ß signaling are independent of parasite burden and the ability of GFAP(+) astrocytes to physically encircle parasites.


Asunto(s)
Astrocitos/inmunología , Neuronas/inmunología , Transducción de Señal/inmunología , Toxoplasma/inmunología , Toxoplasmosis Cerebral/inmunología , Factor de Crecimiento Transformador beta/inmunología , Animales , Astrocitos/parasitología , Astrocitos/patología , Quimiocinas/genética , Quimiocinas/inmunología , Proteína Ácida Fibrilar de la Glía , Humanos , Ratones , Ratones Transgénicos , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/inmunología , Neuronas/parasitología , Neuronas/patología , Transducción de Señal/genética , Toxoplasma/genética , Toxoplasmosis Cerebral/genética , Toxoplasmosis Cerebral/patología , Factor de Crecimiento Transformador beta/genética , Regulación hacia Arriba/genética , Regulación hacia Arriba/inmunología
4.
PLoS Pathog ; 8(7): e1002825, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22910631

RESUMEN

Like many intracellular microbes, the protozoan parasite Toxoplasma gondii injects effector proteins into cells it invades. One group of these effector proteins is injected from specialized organelles called the rhoptries, which have previously been described to discharge their contents only during successful invasion of a host cell. In this report, using several reporter systems, we show that in vitro the parasite injects rhoptry proteins into cells it does not productively invade and that the rhoptry effector proteins can manipulate the uninfected cell in a similar manner to infected cells. In addition, as one of the reporter systems uses a rhoptry:Cre recombinase fusion protein, we show that in Cre-reporter mice infected with an encysting Toxoplasma-Cre strain, uninfected-injected cells, which could be derived from aborted invasion or cell-intrinsic killing after invasion, are actually more common than infected-injected cells, especially in the mouse brain, where Toxoplasma encysts and persists. This phenomenon has important implications for how Toxoplasma globally affects its host and opens a new avenue for how other intracellular microbes may similarly manipulate the host environment at large.


Asunto(s)
Fibroblastos/parasitología , Interacciones Huésped-Parásitos , Proteínas Tirosina Quinasas/metabolismo , Proteínas Protozoarias/metabolismo , Toxoplasma/metabolismo , Toxoplasma/patogenicidad , Animales , Línea Celular , Humanos , Ratones , Ratones Endogámicos C57BL , Factor de Transcripción STAT6/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA