RESUMEN
Introduction: Viscoelastic hemostatic assays (VHA) are integral in contemporary hemostatic resuscitation, offering insights into clot formation, firmness, and lysis for rapid diagnosis and targeted therapy. Large animal models, particularly swine, provide anatomical and physiological analogies for coagulation research. Despite the growing use of VHAs, the ClotPro® device's applicability in porcine models remains unexplored. This study investigates ClotPro® in a porcine model of abdominal surgery, severe hemorrhage, and resuscitation, comparing it with the established ROTEM® delta system. Methods: Twenty-seven healthy pigs underwent abdominal surgery, hemorrhage and resuscitation. ClotPro® and ROTEM® were used to assess viscoelastic hemostatic properties at baseline, after surgery, 60 min after shock induction, 60 and 120 min after resuscitation. Results: Clotting times in extrinsically and intrinsically stimulated assays exhibited fair to moderate correlation. Clot firmness in extrinsically stimulated tests could be used interchangeably while fibrin polymerization assays revealed significant differences between the devices. Fibrin polymerization assays in ClotPro® consistently yielded higher values than ROTEM®. Furthermore, the study evaluated the ClotPro® TPA-test's applicability in porcine blood, revealing failure of lysis induction in porcine blood samples. Conclusion: This research contributes valuable insights into the use of ClotPro® in porcine models of hemorrhage and coagulopathy, highlighting both its applicability and limitations in comparison to ROTEM® delta. The observed differences, especially in fibrin polymerization assays, emphasize the importance of understanding device-specific characteristics when interpreting results. Due to its inapplicability, TPA-test should not be used in porcine blood to evaluate fibrinolytic potential. The study provides a foundation for future investigations into the use of different viscoelastic hemostatic assays in porcine animal models.
RESUMEN
Introduction: Acute kidney injury (AKI) is a common complication in patients undergoing major vascular surgery. Despite significant research efforts in this area, the incidence of AKI remains high, posing a significant challenge to healthcare systems, especially in situations where resources are limited. Early prediction of AKI severity and individualized postoperative care is therefore essential. Methods: The primary objective of this exploratory study was to assess the diagnostic value of urine cell-cycle arrest biomarkers [(TIMP-2) × (IGFBP7)] and soluble urokinase plasminogen activator receptor (suPAR) for predicting moderate or severe AKI within 24 h after open aortic surgery, and compared to routine kidney biomarkers. Seventy-five patients undergoing elective aortic surgery were included. Clinical parameters, urine and blood samples were collected preoperatively, immediately postoperatively, and 24 h later. AKI was defined using KDIGO criteria. Individual and combined diagnostic performance of biomarkers were evaluated. Results: Of the 75 patients, 61% developed AKI, of which 28% developed moderate or severe AKI within 24 h of surgery. Baseline demographics, comorbidities and kidney parameters did not differ between patients with moderate or severe AKI (AKI II/III) and none or mild AKI (AKI 0/I), except for higher preoperative suPAR levels in later AKI II/III patients. Urine osmolality, Cystatin C and serum creatinine had the highest predictive power for AKI II/III with AUCs of 0.75-0.72. (TIMP-2) × (IGFBP7), and neither (TIMP-2) × (IGFBP7) nor suPAR individually showed superior diagnostic value. Combining CysC or SCr with urine osmolality and 6 h urine output gave the best performance with AUCs of 0.86 (95% CI, 0.74-0.96) and 0.85 (95% CI, 0.75-0.95) respectively. Conclusion: Our study suggests that routine parameters like urine osmolality, CysC, SCr and 6 h urine output perform best in predicting postoperative AKI after aortic surgery compared to the new biomarkers (TIMP-2) × (IGFBP7) and suPAR. Combining biomarkers, particularly CysC or SCr with urine output, urine osmolality, may enhance diagnostic accuracy. Further validation in larger cohorts and clinical settings is warranted to establish their clinical utility.
RESUMEN
BACKGROUND: Medical research aims to improve patient safety and efficiency in the perioperative setting. One critical aspect of patient safety is the intrahospital transfer of patients. Also, reliable monitoring of vital signs is crucial to support the medical staff. This study was conducted to assess two monitoring systems in terms of the handover time and staff satisfaction. METHODS: To assess several aspects, two monitoring systems were compared: an organizational unit-related monitoring system that needs to be changed and brought back to the initial organizational unit after the patient transfer and a patient-specific monitoring system that accompanies the patient during the whole perioperative process. RESULTS: In total, 243 patients were included, and 375 transfers were examined to analyze economic factors, including differences in handover times and user-friendliness. To this end, 30 employees of the Heidelberg University Hospital were asked about their satisfaction with the two monitoring systems based on a systematic questionnaire. It could be shown that, especially during transfers from the operating theater to the intensive care unit or the recovery room, the time from arrival to fully centralized monitoring and the total handover time were significantly shorter with the patient-specific monitoring system (p < 0.001). Furthermore, the staff was more satisfied with the patient-specific monitor system in terms of flexibility, cleanability and usability. CONCLUSION: The increased employee satisfaction and significant time benefits during intrahospital transports may increase patient safety and efficiency of patient care, reduce employee workload, and reduce costs in the overall context of patient care.
RESUMEN
Background: Viscoelastic hemostatic assays (VHAs) have become an integral diagnostic tool in guiding hemostatic therapy, offering new opportunities in personalized hemostatic resuscitation. This study aims to assess the interchangeability of ClotPro® and ROTEM® delta in the unique context of parturient women. Methods: Blood samples from 217 parturient women were collected at three timepoints. A total of 631 data sets were eligible for our final analysis. The clotting times were analyzed via extrinsic and intrinsic assays, and the clot firmness parameters A5, A10, and MCF were analyzed via extrinsic, intrinsic, and fibrin polymerization assays. In parallel, the standard laboratory coagulation statuses were obtained. Device comparison was assessed using regression and Bland-Altman plots. The best cutoff calculations were used to determine the VHA values corresponding to the established standard laboratory cutoffs. Results: The clotting times in the extrinsic and intrinsic assays showed notable differences between the devices, while the extrinsic and intrinsic clot firmness results demonstrated interchangeability. The fibrinogen assays revealed higher values in ClotPro® compared to ROTEM®. An ROC analysis identified VHA parameters with high predictive values for coagulopathy exclusion and yet low specificity. Conclusions: In the obstetric setting, the ROTEM® and ClotPro® parameters demonstrate a significant variability. Device- and indication-specific transfusion algorithms are essential for the accurate interpretation of measurements and adequate hemostatic therapy.
RESUMEN
Although significant efforts have been made to enhance trauma care, the mortality rate for traumatic cardiac arrest (TCA) remains exceedingly high. Therefore, our institution has implemented special measures to optimize the treatment of major trauma patients. These measures include a prehospital Medical Intervention Car (MIC) and a 'code red' protocol in the trauma resuscitation room for patients with TCA or shock. These measures enable the early treatment of reversible causes of TCA and have resulted in a significant number of patients achieving adequate ROSC. However, a significant proportion of these patients still die due to circulatory failure shortly after. Our observations from patients who underwent clamshell thoracotomy or received echocardiographic evaluation in conjunction with current scientific findings led us to conclude that dysfunction of the heart itself may be the cause. Therefore, we propose discussing severe trauma-associated cardiac failure (STAC) as a new entity to facilitate scientific research and the development of specific treatment strategies, with the aim of improving the outcome of severe trauma.
Asunto(s)
Paro Cardíaco , Insuficiencia Cardíaca , Humanos , Insuficiencia Cardíaca/etiología , Insuficiencia Cardíaca/terapia , Corazón , Ecocardiografía , ToracotomíaRESUMEN
Background: Postpartum hemorrhage (PPH) is still the leading cause of maternal morbidity and mortality worldwide. While impaired fibrin polymerization plays a crucial role in the development and progress of PPH, recent approaches using viscoelastic measurements have failed to sensitively detect early changes in fibrinolysis in PPH. This study aimed to evaluate whether women experiencing PPH show alterations in POC-VET fibrinolytic potential during childbirth and whether fibrinolytic potential offers benefits in the prediction and treatment of PPH. Methods: Blood samples were collected at three different timepoints: T0 = hospital admission (19 h ± 18 h prepartum), T1 = 30-60 min after placental separation, and T2 = first day postpartum (19 h ± 6 h postpartum). In addition to standard laboratory tests, whole-blood impedance aggregometry (Multiplate) and viscoelastic testing (VET) were performed using the ClotPro system, which included the TPA-test lysis time, to assess the POC-VET fibrinolytic potential, and selected coagulation factors were measured. The results were correlated with blood loss and clinical outcome markers. Severe PPH was defined as a hemoglobin drop > 4g/dl and/or the occurrence of shock or the need for red blood cell transfusion. Results: Blood samples of 217 parturient women were analyzed between June 2020 and December 2020 at Heidelberg University Women's Hospital, and 206 measurements were eligible for the final analysis. Women experiencing severe PPH showed increased fibrinolytic potential already at the time of hospital admission. When compared to non-PPH, the difference persisted 30-60 min after placental separation. A higher fibrinolytic potential was accompanied by a greater drop in fibrinogen and higher d-dimer values after placental separation. While 70% of women experiencing severe PPH showed fibrinolytic potential, 54% of those without PPH showed increased fibrinolytic potential as well. Conclusion: We were able to show that antepartal and peripartal fibrinolytic potential was elevated in women experiencing severe PPH. However, several women showed high fibrinolytic potential but lacked clinical signs of PPH. The findings indicate that high fibrinolytic potential is a risk factor for the development of coagulopathy, but further conditions are required to cause PPH.
RESUMEN
Extracorporeal liver-support therapies remain controversial in critically ill patients, as most studies have failed to show an improvement in outcomes. However, heterogeneous timing and inclusion criteria, an insufficient number of treatments, and the lack of a situation-dependent selection of available liver-support modalities may have contributed to negative study results. We retrospectively investigated the procedural characteristics and safety of the three liver-support therapies CytoSorb, Molecular Adsorbent Recirculating System (MARS) and therapeutic plasma exchange (TPE). Whereas TPE had its strengths in a shorter treatment duration, in clearing larger molecules, affecting platelet numbers less, and improving systemic coagulation and hemodynamics, CytoSorb and MARS were associated with a superior reduction in particularly small protein-bound and water-soluble substances. The clearance magnitude was concentration-dependent for all three therapies, but additionally related to the molecular weight for CytoSorb and MARS therapy. Severe complications did not appear. In conclusion, a better characterization of disease-driving as well as beneficial molecules in critically ill patients with acute liver dysfunction is crucial to improve the use of liver-support therapy in critically ill patients. TPE may be beneficial in patients at high risk for bleeding complications and impaired liver synthesis and hemodynamics, while CytoSorb and MARS may be considered for patients in whom the elimination of smaller toxic compounds is a primary objective.
RESUMEN
Sepsis is defined as organ failure caused by dysregulated host response to infection. While early antibiotic treatment in patients with acute infection is essential, treating non-infectious patients must be avoided. Current guidelines recommend procalcitonin (PCT) to guide discontinuation of antibiotic treatment. For initiation of therapy, there is currently no recommended biomarker. In this study, we evaluated Host-Derived Delta-like Canonical Notch Ligand 1 (DLL1), a monocyte membrane ligand that has shown promising results in differentiating infectious from non-infectious critically ill patients. Soluble DLL1 levels were measured in plasma samples of six different cohorts. The six cohorts comprise two cohorts with non-infectious inflammatory auto-immune diseases (Hidradenitis Suppurativa, Inflammatory Bowel Disease), one cohort of bacterial skin infection, and three cohorts of suspected systemic infection or sepsis. In total, soluble DLL1 plasma levels of 405 patients were analyzed. Patients were divided into three groups: inflammatory disease, infection, and sepsis (defined according to the Sepsis-3 definition), followed by the evaluation of its diagnostic performance via Area Under the Receiver Operating Characteristics (AUROC) analyses. Patients of the sepsis group showed significantly elevated plasma DLL1 levels compared to patients with uncomplicated infections and sterile inflammation. However, patients with infections had significantly higher DLL1 levels than patients with inflammatory diseases. Diagnostic performance was evaluated and showed better performance for DLL1 for the recognition of sepsis (AUC: 0.823; CI 0.731-0.914) than C-reactive protein (AUC 0.758; CI 0.658-0.857), PCT (AUC 0.593; CI 0.474-0.711) and White Blood Cell count (AUC 0.577; CI 0.46-0.694). DLL1 demonstrated promising results for diagnosing sepsis and was able to differentiate sepsis from other infectious and inflammatory diseases.
Asunto(s)
Enfermedades Transmisibles , Sepsis , Humanos , Ligandos , Calcitonina , Biomarcadores , Sepsis/diagnóstico , Polipéptido alfa Relacionado con CalcitoninaRESUMEN
Hyperspectral Imaging (HSI) is a relatively new medical imaging modality that exploits an area of diagnostic potential formerly untouched. Although exploratory translational and clinical studies exist, no surgical HSI datasets are openly accessible to the general scientific community. To address this bottleneck, this publication releases HeiPorSPECTRAL ( https://www.heiporspectral.org ; https://doi.org/10.5281/zenodo.7737674 ), the first annotated high-quality standardized surgical HSI dataset. It comprises 5,758 spectral images acquired with the TIVITA® Tissue and annotated with 20 physiological porcine organs from 8 pigs per organ distributed over a total number of 11 pigs. Each HSI image features a resolution of 480 × 640 pixels acquired over the 500-1000 nm wavelength range. The acquisition protocol has been designed such that the variability of organ spectra as a function of several parameters including the camera angle and the individual can be assessed. A comprehensive technical validation confirmed both the quality of the raw data and the annotations. We envision potential reuse within this dataset, but also its reuse as baseline data for future research questions outside this dataset. Measurement(s) Spectral Reflectance Technology Type(s) Hyperspectral Imaging Sample Characteristic - Organism Sus scrofa.
Asunto(s)
Imágenes Hiperespectrales , Porcinos , Porcinos/anatomía & histología , AnimalesRESUMEN
Introduction: Kidney dysfunction is common in patients with aortic stenosis (AS) and correction of the aortic valve by transcatheter aortic valve implantation (TAVI) often affects kidney function. This may be due to microcirculatory changes. Methods: We evaluated skin microcirculation with a hyperspectral imaging (HSI) system, and compared tissue oxygenation (StO2), near-infrared perfusion index (NIR), tissue hemoglobin index (THI) and tissue water index (TWI) in 40 patients undergoing TAVI versus 20 control patients. HSI parameters were measured before TAVI (t1), directly after TAVI (t2), and on postinterventional day 3 (t3). The primary outcome was the correlation of tissue oxygenation (StO2) to the creatinine level after TAVI. Results: We performed 116 HSI image recordings in patients undergoing TAVI for the treatment of severe aortic stenosis and 20 HSI image recordings in control patients. Patients with AS had a lower THI at the palm (p = 0.034) and a higher TWI at the fingertips (p = 0.003) in comparison to control patients. TAVI led to an increase of TWI, but had no uniform enduring effect on StO2 and THI. Tissue oxygenation StO2 at both measurement sites correlated negatively with creatinine levels after TAVI at t2 (palm: ρ = -0.415; p = 0.009; fingertip: ρ = -0.519; p < 0.001) and t3 (palm: ρ = -0.427; p = 0.008; fingertip: ρ = -0.398; p = 0.013). Patients with higher THI at t3 reported higher physical capacity and general health scores 120 days after TAVI. Conclusion: HSI is a promising technique for periinterventional monitoring of tissue oxygenation and microcirculatory perfusion quality, which are related to kidney function, physical capacity, and clinical outcomes after TAVI. Clinical trial registration: https://drks.de/search/de/trial, identifier DRKS00024765.
RESUMEN
BACKGROUND: Small bowel malperfusion (SBM) can cause high morbidity and severe surgical consequences. However, there is no standardized objective measuring tool for the quantification of SBM. Indocyanine green (ICG) imaging can be used for visualization, but lacks standardization and objectivity. Hyperspectral imaging (HSI) as a newly emerging technology in medicine might present advantages over conventional ICG fluorescence or in combination with it. METHODS: HSI baseline data from physiological small bowel, avascular small bowel and small bowel after intravenous application of ICG was recorded in a total number of 54 in-vivo pig models. Visualizations of avascular small bowel after mesotomy were compared between HSI only (1), ICG-augmented HSI (IA-HSI) (2), clinical evaluation through the eyes of the surgeon (3) and conventional ICG imaging (4). The primary research focus was the localization of resection borders as suggested by each of the four methods. Distances between these borders were measured and histological samples were obtained from the regions in between in order to quantify necrotic changes 6 h after mesotomy for every region. RESULTS: StO2 images (1) were capable of visualizing areas of physiological perfusion and areas of clearly impaired perfusion. However, exact borders where physiological perfusion started to decrease could not be clearly identified. Instead, IA-HSI (2) suggested a sharp-resection line where StO2 values started to decrease. Clinical evaluation (3) suggested a resection line 23 mm (±7 mm) and conventional ICG imaging (4) even suggested a resection line 53 mm (±13 mm) closer towards the malperfused region. Histopathological evaluation of the region that was sufficiently perfused only according to conventional ICG (R3) already revealed a significant increase in pre-necrotic changes in 27% (±9%) of surface area. Therefore, conventional ICG seems less sensitive than IA-HSI with regards to detection of insufficient tissue perfusion. CONCLUSIONS: In this experimental animal study, IA-HSI (2) was superior for the visualization of segmental SBM compared to conventional HSI imaging (1), clinical evaluation (3) or conventional ICG imaging (4) regarding histopathological safety. ICG application caused visual artifacts in the StO2 values of the HSI camera as values significantly increase. This is caused by optical properties of systemic ICG and does not resemble a true increase in oxygenation levels. However, this empirical finding can be used to visualize segmental SBM utilizing ICG as contrast agent in an approach for IA-HSI. Clinical applicability and relevance will have to be explored in clinical trials. LEVEL OF EVIDENCE: Not applicable. Translational animal science. Original article.
Asunto(s)
Imágenes Hiperespectrales , Verde de Indocianina , Animales , Porcinos , Perfusión , Intestinos , Medios de ContrasteRESUMEN
BACKGROUND: Hyperspectral imaging (HSI) is a novel imaging technology with the ability to assess microcirculatory impairment. We aimed to assess feasibility of performing HSI, a noninvasive, contactless method to assess microcirculatory alterations, during trauma resuscitation care. METHODS: This randomized controlled clinical trial was conducted in a dedicated trauma resuscitation room of a level one trauma center. We included adult patients who were admitted to the trauma resuscitation room. Patients were allocated in a 1:1 ratio to the HSI group (intervention) or control group. In addition to the standard of care, patients in the intervention group had two hyperspectral recordings (HSR) of their hand palm taken. Primary outcomes were the treatment duration of the primary survey (until end of ABCDE-evaluation, ultrasound and evaluation by the trauma team) and the total resuscitation room care (until transport to definitive care) as well as the ability to perform measurements from all HSR. Secondary outcomes were analyses from the intervention group compared to HSI measurements of 26 healthy volunteers including an analysis based on the ISS (Injury severity score) (< 16 vs. ≥ 16). Care givers, and those assessing the outcomes were blinded to group assignment. RESULTS: Our final analysis included 51 patients, with 25 and 26 allocated to the control and intervention group, respectively. There was a statistically significant shorter median duration of the primary survey in the control group (03:22 min [Q1-Q3 03:00-03:51]) compared to the intervention group (03:59 min [Q1-Q3 03:29-04:35]) with a difference of -37 s (95% CI -66 to -12). Total resuscitation room care was longer in the control group, but without significance: 60 s (95% CI -60 to 180). From 52 HSI, we were able to perform hyperspectral measurements on all images, with significant differences between injured patients and healthy volunteers. CONCLUSION: HSI proved to be feasible during resuscitation room care and can provide valuable information on the microcirculatory state. Trial registration DRKS DRKS00024047- www.drks.de . Registered on 13th April 2021.
Asunto(s)
Imágenes Hiperespectrales , Resucitación , Adulto , Humanos , Microcirculación , Resucitación/métodos , Puntaje de Gravedad del Traumatismo , Centros TraumatológicosRESUMEN
In sepsis, both beneficial and detrimental effects of fresh frozen plasma (FFP) transfusion have been reported. The aim of this study was to analyze the indication for and effect of FFP transfusion in patients with septic shock. We performed a secondary analysis of a retrospective single-center cohort of all patients treated for septic shock at the interdisciplinary surgical intensive care unit (ICU) of the Heidelberg University Hospital. Septic shock was defined according to sepsis-3 criteria. To assess the effects of FFP administration in the early phase of septic shock, we compared patients with and without FFP transfusion during the first 48 h of septic shock. Patients who died during the first 48 h of septic shock were excluded from the analysis. Primary endpoints were 30- and 90-day mortality. A total of 261 patients were identified, of which 100 (38.3%) received FFP transfusion within the first 48 h after septic shock onset. The unmatched analysis showed a trend toward higher 30- and 90-d mortality in the FFP group (30 d: +7% p = 0.261; 90 d: +11.9% p = 0.061). In the propensity-matched analysis, 30- and 90-day mortality were similar between groups. Plasma administration did not influence fluid or vasopressor need, lactate levels, ICU stay, or days on a ventilator. We found no significant harm or associated benefit of FFP use in the early phase of septic shock. Finally, plasma should only be used in patients with a strong indication according to current recommendations, as a conclusive evaluation of the risk-benefit ratio for plasma transfusion in septic shock cannot be made based on the current data.
RESUMEN
BACKGROUND: A profound inflammation-mediated lung injury with long-term acute respiratory distress and high mortality is one of the major complications of critical COVID-19. Immunoglobulin M (IgM)-enriched immunoglobulins seem especially capable of mitigating the inflicted inflammatory harm. However, the efficacy of intravenous IgM-enriched preparations in critically ill patients with COVID-19 is largely unclear. METHODS: In this retrospective multicentric cohort study, 316 patients with laboratory-confirmed critical COVID-19 were treated in ten German and Austrian ICUs between May 2020 and April 2021. The primary outcome was 30-day mortality. Analysis was performed by Cox regression models. Covariate adjustment was performed by propensity score weighting using machine learning-based SuperLearner to overcome the selection bias due to missing randomization. In addition, a subgroup analysis focusing on different treatment regimens and patient characteristics was performed. RESULTS: Of the 316 ICU patients, 146 received IgM-enriched immunoglobulins and 170 cases did not, which served as controls. There was no survival difference between the two groups in terms of mortality at 30 days in the overall cohort (HRadj: 0.83; 95% CI: 0.55 to 1.25; p = 0.374). An improved 30-day survival in patients without mechanical ventilation at the time of the immunoglobulin treatment did not reach statistical significance (HRadj: 0.23; 95% CI: 0.05 to 1.08; p = 0.063). Also, no statistically significant difference was observed in the subgroup when a daily dose of ≥ 15 g and a duration of ≥ 3 days of IgM-enriched immunoglobulins were applied (HRadj: 0.65; 95% CI: 0.41 to 1.03; p = 0.068). CONCLUSIONS: Although we cannot prove a statistically reliable effect of intravenous IgM-enriched immunoglobulins, the confidence intervals may suggest a clinically relevant effect in certain subgroups. Here, an early administration (i.e. in critically ill but not yet mechanically ventilated COVID-19 patients) and a dose of ≥ 15 g for at least 3 days may confer beneficial effects without concerning safety issues. However, these findings need to be validated in upcoming randomized clinical trials. Trial registration DRKS00025794 , German Clinical Trials Register, https://www.drks.de . Registered 6 July 2021.
Asunto(s)
Tratamiento Farmacológico de COVID-19 , Estudios de Cohortes , Enfermedad Crítica/terapia , Humanos , Inmunoglobulina M/uso terapéutico , Inmunoglobulinas Intravenosas , Respiración Artificial , Estudios Retrospectivos , SARS-CoV-2RESUMEN
Visual discrimination of tissue during surgery can be challenging since different tissues appear similar to the human eye. Hyperspectral imaging (HSI) removes this limitation by associating each pixel with high-dimensional spectral information. While previous work has shown its general potential to discriminate tissue, clinical translation has been limited due to the method's current lack of robustness and generalizability. Specifically, the scientific community is lacking a comprehensive spectral tissue atlas, and it is unknown whether variability in spectral reflectance is primarily explained by tissue type rather than the recorded individual or specific acquisition conditions. The contribution of this work is threefold: (1) Based on an annotated medical HSI data set (9059 images from 46 pigs), we present a tissue atlas featuring spectral fingerprints of 20 different porcine organs and tissue types. (2) Using the principle of mixed model analysis, we show that the greatest source of variability related to HSI images is the organ under observation. (3) We show that HSI-based fully-automatic tissue differentiation of 20 organ classes with deep neural networks is possible with high accuracy (> 95%). We conclude from our study that automatic tissue discrimination based on HSI data is feasible and could thus aid in intraoperative decisionmaking and pave the way for context-aware computer-assisted surgery systems and autonomous robotics.
Asunto(s)
Imágenes Hiperespectrales , Aprendizaje Automático , Animales , Redes Neurales de la Computación , PorcinosRESUMEN
BACKGROUND: The ultimate goal of haemodynamic therapy is to improve microcirculatory tissue and organ perfusion. Hyperspectral imaging (HSI) has the potential to enable noninvasive microcirculatory monitoring at bedside. METHODS: HSI (Tivita® Tissue System) measurements of tissue oxygenation, haemoglobin, and water content in the skin (ear) and kidney were evaluated in a double-hit porcine model of major abdominal surgery and haemorrhagic shock. Animals of the control group (n = 7) did not receive any resuscitation regime. The interventional groups were treated exclusively with either crystalloid (n = 8) or continuous norepinephrine infusion (n = 7). RESULTS: Haemorrhagic shock led to a drop in tissue oxygenation parameters in all groups. These correlated with established indirect markers of tissue oxygenation. Fluid therapy restored tissue oxygenation parameters. Skin and kidney measurements correlated well. High dose norepinephrine therapy deteriorated tissue oxygenation. Tissue water content increased both in the skin and the kidney in response to fluid therapy. CONCLUSIONS: HSI detected dynamic changes in tissue oxygenation and perfusion quality during shock and was able to indicate resuscitation effectivity. The observed correlation between HSI skin and kidney measurements may offer an estimation of organ oxygenation impairment from skin monitoring. HSI microcirculatory monitoring could open up new opportunities for the guidance of haemodynamic management.
RESUMEN
BACKGROUND: Hyperspectral imaging (HSI) could provide extended haemodynamic monitoring of perioperative tissue oxygenation and tissue water content to visualize effects of haemodynamic therapy and surgical trauma. The objective of this study was to assess the capacity of HSI to monitor skin microcirculation and possible relations to perioperative organ dysfunction in patients undergoing pancreatic surgery. METHODS: The hyperspectral imaging TIVITA® Tissue System was used to evaluate superficial tissue oxygenation (StO2), deeper layer tissue oxygenation (near-infrared perfusion index (NPI)), haemoglobin distribution (tissue haemoglobin index (THI)) and tissue water content (tissue water index (TWI)) in 25 patients undergoing pancreatic surgery. HSI parameters were measured before induction of anaesthesia (t1), after induction of anaesthesia (t2), postoperatively before anaesthesia emergence (t3), 6 h after emergence of anaesthesia (t4) and three times daily (08:00, 14:00, 20:00 ± 1 h) at the palm and the fingertips until the second postoperative day (t5-t10). Primary outcome was the correlation of HSI with perioperative organ dysfunction assessed with the perioperative change of SOFA score. RESULTS: Two hundred and fifty HSI measurements were performed in 25 patients. Anaesthetic induction led to a significant increase of tissue oxygenation parameters StO2 and NPI (t1-t2). StO2 and NPI decreased significantly from t2 until the end of surgery (t3). THI of the palm showed a strong correlation with haemoglobin levels preoperatively (t2: r = 0.83, p < 0.001) and 6 h postoperatively (t4: r = 0.71, p = 0.001) but not before anaesthesia emergence (t3: r = 0.35, p = 0.10). TWI of the palm and the fingertip rose significantly between pre- and postoperative measurements (t2-t3). Higher blood loss, syndecan level and duration of surgery were associated with a higher increase of TWI. The perioperative change of HSI parameters (∆t1-t3) did not correlate with the perioperative change of the SOFA score. CONCLUSION: This is the first study using HSI skin measurements to visualize tissue oxygenation and tissue water content in patients undergoing pancreatic surgery. HSI was able to measure short-term changes of tissue oxygenation during anaesthetic induction and pre- to postoperatively. TWI indicated a perioperative increase of tissue water content. Perioperative use of HSI could be a useful extension of haemodynamic monitoring to assess the microcirculatory response during haemodynamic therapy and major surgery. TRIAL REGISTRATION: German Clinical Trial Register, DRKS00017313 on 5 June 2019.