Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Eur J Med Chem ; 180: 213-223, 2019 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-31306908

RESUMEN

Reactions of Ni(II) and Pd(II) precursors with S-benzyl-N-(ferrocenyl)methylenedithiocarbazate (HFedtc) led to the formation of heterobimetallic complexes of the type [MII(Fedtc)2] (M = Ni and Pd). The characterization of the compounds involved the determination of melting point, FTIR, UV-Vis, 1H NMR, elemental analysis and electrochemical experiments. Furthermore, the crystalline structures of HFedtc and [NiII(Fedtc)2] were determined by single crystal X-ray diffraction. The compounds were evaluated against the intracellular form of Trypanosoma cruzi (Tulahuen Lac-Z strain) and the cytotoxicity assays were assessed using LLC-MK2 cells. The results showed that the coordination of HFedtc to Ni(II) or Pd(II) decreases the in vitro trypanocidal activity while the cytotoxicity against LLC-MK2 cells does not change significantly. [PdII(Fedtc)2] showed the greater potential between the two complexes studied, showing an SI value of 8.9. However, this value is not better than that of the free ligand with an SI of 40, a similar value to that of the standard drug benznidazole (SI = 48). Additionally, molecular docking simulations were performed with Trypanosoma cruzi Old Yellow Enzyme (TcOYE), which predicted that HFedtc binds to the protein, almost parallel to the flavin mononucleotide (FMN) prosthetic group, while the [NiII(Fedtc)2] complex was docked into the enzyme binding site in a significantly different manner. In order to confirm the hypothetical interaction, in vitro experiments of fluorescence quenching and enzymatic activity were performed which indicated that, although HFedtc was not processed by the enzyme, it was able to act as a competitive inhibitor, blocking the hydride transfer from the FMN prosthetic group of the enzyme to the menadione substrate.


Asunto(s)
Compuestos de Bencilo/farmacología , Complejos de Coordinación/farmacología , Inhibidores Enzimáticos/farmacología , Hidrazinas/farmacología , Metalocenos/farmacología , NADPH Deshidrogenasa/antagonistas & inhibidores , Níquel/farmacología , Paladio/farmacología , Tripanocidas/farmacología , Trypanosoma cruzi/efectos de los fármacos , Animales , Supervivencia Celular/efectos de los fármacos , Complejos de Coordinación/química , Complejos de Coordinación/metabolismo , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/metabolismo , Humanos , Hidrazinas/química , Macaca mulatta , Metalocenos/química , Simulación del Acoplamiento Molecular , Estructura Molecular , NADPH Deshidrogenasa/química , NADPH Deshidrogenasa/metabolismo , Níquel/química , Níquel/metabolismo , Paladio/química , Paladio/metabolismo , Relación Estructura-Actividad , Tripanocidas/química , Tripanocidas/metabolismo , Trypanosoma cruzi/metabolismo
2.
Inorg Chem ; 58(2): 1030-1039, 2019 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-30605327

RESUMEN

Complexes derived from meso-tetra(thienyl)porphyrins (TThP) and meso-tetra(pyridyl)porphyrin (TPyP) containing peripheral ruthenium complexes with general formulas {TPyP[RuCl(dppb)(5,5'-Mebipy)]4}(PF6)4, {TThP[RuCl(dppb)(5,5'-Mebipy)]4}(PF6)4, and {TThP-me-[RuCl(dppb)(5,5'-Mebipy)]4}(PF6)4 [5,5'-Mebipy = 5,5'-dimethyl-2,2'-bipyridine and dppb = 1,4-bis(diphenylphosphino)butane] were synthesized and characterized by spectroscopy techniques (1H- and 31P{1H}-NMR, IR, UV/vis, fluorescence, and electron paramagnetic resonance (EPR)), cyclic voltammetry, coulometry, molar conductivity, and elemental analysis. Voltammetry and UV/vis studies demonstrated differentiated electronic properties for ruthenium appended with TThP and TThP-me when compared to ruthenium appended with TPyP. The UV/vis analysis for the ruthenium complex derived from TThP and TThP-me, as well as the Soret and Q bands, characteristics of porphyrins, showed a band at 700 nm referring to the Ru → S electronic transition, and porphyrin TThP-me showed another band at 475 nm from the Ru-N transition. The attribution of these bands was confirmed by spectroelectrochemical analysis. Cyclic voltammetry analysis for the ruthenium complex derived from TPyP exhibited only an electrochemical process with E1/2 = 0.47 V assigned to the Ru(II)/Ru(III) redox pair (Fc/Fc+). On the other hand, two processes were observed for the ruthenium complexes derived from TThP and TThP-me, with E1/2 around 0.17 and 0.47 V, which were attributed to the formation of a mixed valence tetranuclear species containing Ru(II) and Ru(III) ions, showing that the peripheral groups are not oxidized at the same potential. Fluorescence spectroscopic experiments show the existence of a mixed state of emission in the supramolecular porphyrin moieties. The results suggest the formation of Ru(II)-Ru(III) mixed valence complexes when oxidation potential was applied around 0.17 V in the {TThP[RuCl(dppb)(5,5'-Mebipy)]4}(PF6)4 and {TThP-me-[RuCl(dppb)(5,5'-Mebipy)]4}(PF6)4 species.

3.
R Soc Open Sci ; 4(12): 170675, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29308220

RESUMEN

The aim of this study was to obtain an electrochemical device between the electrostatic interaction of the electropolymerized porphyrin {CoTPyP[RuCl3(dppb)]4}, where TPyP = 5,10,15, 20-tetrapyridilphorphyrin and dppb = 1,4-bis(diphenylphosphino)butane, and gold nanoparticles (AuNPsn-), to be used as a voltammetric sensor to determine catechol (CC). The modified electrode, labelled as [(CoTPRu4)n8+-BE]/AuNPsn- {where BE = bare electrode = glassy carbon electrode (GCE) or indium tin oxide (ITO)}, was made layer-by-layer. Initially, a cationic polymeric film was generated by electropolymerization of the {CoTPyP[RuCl3(dppb)]4} onto the surface of the bare electrode to produce an intermediary electrode [(CoTPRu4)n8+-BE]. Making the final electronic device also involves coating the electrode [(CoTPRu4)n8+-BE] using a colloidal suspension of AuNPsn- by electrostatic interaction between the species. Therefore, a bilayer labelled as [(CoTPRu4)n8+-BE]/AuNPsn- was produced and used as an electrochemical sensor for CC determination. The electrochemical behaviour of CC was investigated using cyclic voltammetry at [(CoTPRu4)n8+-GCE]/AuNPsn- electrode. Compared to the GCE, the [(CoTPRu4)n8+-GCE]/AuNPsn- showed higher electrocatalytic activity towards the oxidation of CC. Under the optimized conditions, the calibration curves for CC were 21-1357 µmol l-1 with a high sensitivity of 108 µA µmol l-1 cm-2. The detection limit was 1.4 µmol l-1.

4.
Inorg Chem ; 48(11): 4692-700, 2009 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-19402621

RESUMEN

Three novel polymetallic ruthenium (III) meso-tetra(4-pyridyl)porphyrins containing peripheral "RuCl(3)(dppb)" moieties have been prepared and characterized. The X-ray structure of the tetraruthenated {NiTPyP[RuCl(3)(dppb)](4)} porphyrin complex crystallizes in the triclinic space group P1. This structure is discussed and compared with the crystal data for the mer-[RuCl(3)(dppb)(py)]. The {TPyP[RuCl(3)(dppb)](4)} and {CoTPyP[RuCl(3)(dppb)](4)} porphyrins were used to obtain electrogenerated films on ITO and glass carbon electrode surfaces, respectively. Such tetraruthenated porphyrins form films of a mixed-valence species {TPyP[Ru(dppb)](4)(muCl(3))(2)}(2n)(4n2+) and {CoTPyP[Ru(dppb)](4)(muCl(3))(2)}(2n)(4n2+) on the electrode surface. The modified electrode with {CoTPyP[RuCl(3)(dppb)](4)} is very stable and can be used to detect organic substrates such as catechol.


Asunto(s)
Compuestos Organometálicos/química , Fosfinas/química , Porfirinas/química , Rutenio/química , Cristalografía por Rayos X , Electrodos , Sustancias Macromoleculares/síntesis química , Sustancias Macromoleculares/química , Modelos Moleculares , Conformación Molecular , Compuestos Organometálicos/síntesis química
5.
J Nanosci Nanotechnol ; 5(6): 909-16, 2005 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16060152

RESUMEN

The fabrication of supramolecular structures from the tetraruthenated porphyrin-containing phosphines, {TPyP[RuCl3(dppb)]4}, RuTPyP, is demonstrated with Langmuir and Langmuir-Blodgett films. The surface pressure-molecular area isotherms (pi-A) point to an edge-on arrangement for the RuTPyP molecules in the condensed state. Weak aggregation in the Langmuir films was indicated by non-zero surface potentials at large areas per molecule and a slight red shift in the ultraviolet-visible absorption spectrum in comparison to the spectrum in solution. Further aggregation occurs in the Z-type Langmuir-Blodgett films, which was confirmed with ultraviolet-visible spectroscopy of the deposited films. Fourier transform infrared and Raman spectroscopic data for powder and Langmuir-Blodgett films indicate that the RuTPyP molecules are chemically stable in Langmuir-Blodgett films regardless of the contact with water during film fabrication. The nanostructured nature of the Langmuir-Blodgett films was manifested in cyclic voltammetry due to the high sensitivity of the metallic centers in RuTPyP. Electrodes modified with Langmuir-Blodgett films exhibit an anodic peak at 100 mV and a cathodic peak at 7 mV, which is assigned to RuIII/RuII redox processes. Furthermore, Langmuir-Blodgett films from RuTPyP showed electrocatalytic activity for oxidation of benzyl alcohol, illustrated by a large shift of 100 mV in the anodic peak at 400 mV, while electropolymerized and cast films of the same compound displayed smaller and no activities, respectively.


Asunto(s)
Técnicas Biosensibles/métodos , Cristalización/métodos , Electroquímica/métodos , Membranas Artificiales , Nanoestructuras/química , Porfirinas/química , Rutenio/química , Materiales Biomiméticos/análisis , Materiales Biomiméticos/química , Técnicas Biosensibles/instrumentación , Ensayo de Materiales , Nanoestructuras/análisis , Porfirinas/análisis , Rutenio/análisis , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA