Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Base de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Viruses ; 15(6)2023 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-37376700

RESUMEN

Viruses encounter numerous host factors that facilitate or suppress viral infection. Although some host factors manipulated by viruses were uncovered, we have limited knowledge of the pathways hijacked to promote viral replication and activate host defense responses. Turnip mosaic virus (TuMV) is one of the most prevalent viral pathogens in many regions of the world. Here, we employed an isobaric tag for relative and absolute quantitation (iTRAQ)-based proteomics approach to characterize cellular protein changes in the early stages of infection of Nicotiana benthamiana by wild type and replication-defective TuMV. A total of 225 differentially accumulated proteins (DAPs) were identified (182 increased and 43 decreased). Bioinformatics analysis showed that a few biological pathways were associated with TuMV infection. Four upregulated DAPs belonging to uridine diphosphate-glycosyltransferase (UGT) family members were validated by their mRNA expression profiles and their effects on TuMV infection. NbUGT91C1 or NbUGT74F1 knockdown impaired TuMV replication and increased reactive oxygen species production, whereas overexpression of either promoted TuMV replication. Overall, this comparative proteomics analysis delineates the cellular protein changes during early TuMV infection and provides new insights into the role of UGTs in the context of plant viral infection.


Asunto(s)
Nicotiana , Potyvirus , Proteómica , Potyvirus/genética , Enfermedades de las Plantas
2.
PLoS Pathog ; 18(1): e1010257, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35073383

RESUMEN

Accumulated experimental evidence has shown that viruses recruit the host intracellular machinery to establish infection. It has recently been shown that the potyvirus Turnip mosaic virus (TuMV) transits through the late endosome (LE) for viral genome replication, but it is still largely unknown how the viral replication vesicles labelled by the TuMV membrane protein 6K2 target LE. To further understand the underlying mechanism, we studied the involvement of the vacuolar sorting receptor (VSR) family proteins from Arabidopsis in this process. We now report the identification of VSR4 as a new host factor required for TuMV infection. VSR4 interacted specifically with TuMV 6K2 and was required for targeting of 6K2 to enlarged LE. Following overexpression of VSR4 or its recycling-defective mutant that accumulates in the early endosome (EE), 6K2 did not employ the conventional VSR-mediated EE to LE pathway, but targeted enlarged LE directly from cis-Golgi and viral replication was enhanced. In addition, VSR4 can be N-glycosylated and this is required for its stability and for monitoring 6K2 trafficking to enlarged LE. A non-glycosylated VSR4 mutant enhanced the dissociation of 6K2 from cis-Golgi, leading to the formation of punctate bodies that targeted enlarged LE and to more robust viral replication than with glycosylated VSR4. Finally, TuMV hijacks N-glycosylated VSR4 and protects VSR4 from degradation via the autophagy pathway to assist infection. Taken together, our results have identified a host factor VSR4 required for viral replication vesicles to target endosomes for optimal viral infection and shed new light on the role of N-glycosylation of a host factor in regulating viral infection.


Asunto(s)
Endosomas/metabolismo , Interacciones Huésped-Patógeno/fisiología , Potyvirus/patogenicidad , Proteínas de Transporte Vesicular/metabolismo , Compartimentos de Replicación Viral/metabolismo , Humanos , Enfermedades de las Plantas/microbiología , Replicación Viral/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA