Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 147
Filtrar
1.
J Colloid Interface Sci ; 675: 980-988, 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-39003817

RESUMEN

Heterojunctions and controllable anionic vacancies are perceived to be powerful means of ameliorating the performance of sodium-ion batteries assignable to their unique physical and chemical properties. However, the mechanism by which heterojunction and vacancy structures affect sodium-ion battery storage remains to be systemically explored. In this study, the Se doped CoS2@CoS1.035@Carbon (Se-CoS2@CoS1.035@C) heterostructure with anion vacancy was synthesized by a one-step calcination. These heterostructures with lower metal oxidation states and anionic vacancies exhibit exceptional Na+ storage performance (554.3 mA h g-1 after 1500 cycles at 5.0 A g-1). Both electrochemical tests and theoretical calculations demonstrate excellent pseudocapacitive behavior and enhanced Na+ adsorption during discharge because of anionic vacancies and Se doping. Additionally, introducing weaker Co-Se bonds and extending Co-S and Co-Se bonds reduce binding energies, which effectively accelerates the conversion reaction. Our findings provide a feasible way to rationally design and facilely prepare heterostructured anode materials with rich anionic vacancies for sodium-ion batteries.

2.
ChemSusChem ; : e202401073, 2024 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-38972841

RESUMEN

In the field of electrolyte design for aqueous zinc-ion batteries (AZIBs), additives containing hydroxyl have been demonstrated to effectively modulate the solvation structure of Zn2+. However, reported studies typically focus solely on the effectiveness of hydroxyl while neglecting the issues that emerge during solvation structure regulation. The strong electron-attracting capability of Zn2+ attracts electrons from the oxygen in hydroxyl, thereby weakening the strength of hydroxyl, the hydrogen evolution reaction (HER) is also pronounced. This work innovatively reveals the limitation of hydroxyl-containing additives and proposes a synergistic regulation strategy based on hybrid additives. Arginine with a high isoelectric point is introduced into the electrolyte system containing hydroxyl additives. The protonation effect and electrostatic attraction of arginine enable it to absorb protons at the anode released by the weakened hydroxyl, thereby compensating for the limitation of hydroxyl additives. Under the synergistic action of hybrid additives, the Zn|Zn battery achieved stable deposition/stripping for over 1200 hours under 10 mA cm-2 and 10 mAh cm-2. Moreover, the Zn|Cu battery cycled for over 570 hours with a high Coulombic efficiency of 99.82%. This study presents a pioneering perspective for the further application of AZIBs.

3.
J Colloid Interface Sci ; 674: 713-721, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38950470

RESUMEN

Amino acids are among the most commercially promising additive solutions for achieving stable zinc anodes. However, greater attention should be given to the limitation arising from the protonation effects induced by high isoelectric point amino acids in the weakly acidic electrolytes of aqueous zinc-ion batteries (AZIBs). In this study, we introduce histidine (HIS) and ethylenediaminetetraacetic acid (EDTA) as hybrid additives into the aqueous electrolyte. Protonated HIS is adsorbed onto the anode interface, inducing uniform deposition and excluding H2O from the inner Helmholtz plane (IHP). Furthermore, the addition of EDTA compensates for the limitation of protonated HIS in excluding solvated H2O. EDTA reconstructs the solvation structure of Zn2+, resulting in a denser zinc deposition morphology. The results demonstrate that the Zn||Zn battery achieved a cycling lifespan exceeding 1480 h at 5 mA cm-2 and 5 mAh cm-2. It also reached over 900 h of cycling at a zinc utilization rate of 70 %. This study provides an innovative perspective for advancing the further development of AZIBs.

4.
J Am Chem Soc ; 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39080509

RESUMEN

Iron-nitrogen-carbon (Fe-N-C) catalysts, although the most active platinum-free option for the cathodic oxygen reduction reaction (ORR), suffer from poor durability due to the Fe leaching and consequent Fenton effect, limiting their practical application in low-temperature fuel cells. This work demonstrates an integrated catalyst of a platinum-iron (PtFe) alloy planted in an Fe-N-C matrix (PtFe/Fe-N-C) to address this challenge. This novel catalyst exhibits both high-efficiency activity and stability, as evidenced by its impressive half-wave potential (E1/2) of 0.93 V versus reversible hydrogen electrode (vs RHE) and minimal 7 mV decay even after 50,000 potential cycles. Remarkably, it exhibits a very low hydrogen peroxide (H2O2) yield (0.07%) at 0.6 V and maintains this performance with negligible change after 10,000 potential cycles. Fuel cells assembled with this cathode PtFe/Fe-N-C catalyst show exceptional durability, with only 8 mV voltage loss at 0.8 A cm-2 after 30,000 cycles and ignorable current degradation at a voltage of 0.6 V over 85 h. Comprehensive in situ experiments and theoretical calculations reveal that oxygen species spillover from Fe-N-C to PtFe alloy not only inhibits H2O2 production but also eliminates harmful oxygenated radicals. This work paves the way for the design of highly efficient and stable ORR catalysts and has significant implications for the development of next-generation fuel cells.

5.
Angew Chem Int Ed Engl ; : e202410818, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39018162

RESUMEN

Gel polymer electrolytes (GPEs) hold great promise for the practical application of lithium metal batteries. However, conventional GPEs hardly resists lithium dendrites growth and maintains long-term cycling stability of the battery due to its poor mechanical performance. Inspired by the slide-ring structure of polyrotaxanes (PRs), herein we developed a dynamic slide-crosslinked gel polymer electrolyte (SCGPE) with extraordinary stretchability of 970.93% and mechanical strength of 1.15 MPa, which is helpful to buffer the volume change of electrodes and maintain mechanical integrity of the battery structure during cycling. Notably, the PRs structures can provide fast ion transport channels to obtain high ionic conductivity of 1.73×10-3 S cm-1 at 30°C. Additionally, the strong polar groups in SCGPE restrict the free movement of anions to achieve high lithium-ion transference number of 0.71, which is favorable to enhance Li+ transport dynamics and induce uniform Li+ deposition. Benefiting from these features, the constructed Li|SCGPE-3|LFP cells exhibit ultra-long and stable cycle life over 1000 cycles and high-capacity retention (89.6% after 1000 cycles). Even at a high rate of 16C, the cells deliver a high capacity of 79.2 mAh g-1. The slide-crosslinking strategy in this work provides a new perspective on the design of advanced GPEs for LMBs.

6.
J Colloid Interface Sci ; 676: 33-44, 2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39018808

RESUMEN

Ideal wave-absorbing materials are required to possess the characteristics such as being "broad, lightweight, thin, and strong." Biomass-derived materials for absorbing electromagnetic waves (EMWs) are widely explored due to their low cost, lightweight, environmentally friendly, high specific surface area, and porous structure. In this study, wood was used as the raw material, and N-doped carbon nanotubes were grown in situ in porous carbon derived from wood, loaded with magnetic metal Co nanoparticles through chemical vapor deposition. The Fir@Co@CNT composite material exhibited a three-dimensional conductive electromagnetic network structure and excellent impedance matching, thereby demonstrating excellent wave absorption performance. By controlling the introduction of carbon nanotubes, the roles of polarization loss and conduction loss in the Fir@Co@CNT composite material were precisely regulated. The Fir@Co@CNT 1:5 composite material achieved a minimum reflection loss (RLmin) of -43.03 dB in the low-frequency region and a maximum effective absorption bandwidth (EABmax) of 4.3 GHz (1.5 mm). Meanwhile, the Fir@Co@CNT 1:10 composite material achieved a RLmin of -52 dB with a thickness of only 2.3 mm, along with an EABmax of 4.2 GHz (1.6 mm). Both materials collectively cover the entire C-band, X-band, and Ku-band in terms of EAB. This work introduces a method for regulating polarization loss and conduction loss, showcasing the potential of biomass carbon materials as low-frequency EMW absorption materials for the first time. It also provides a new direction for the development and application of environmentally friendly, lightweight, high-performance wave-absorbing materials.

7.
J Phys Chem Lett ; 15(25): 6621-6627, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38888276

RESUMEN

Ag exhibits high selectivity of electrochemical CO2 reduction (CO2R) toward C1 products, while the hydrogenation involving the concerted proton-electron transfer (CPET) or sequential electron-proton transfer (SEPT) mechanism is still in debate. Toward a better understanding of the Ag-catalyzed electrochemical CO2R, we employed a microkinetic model based on the Marcus electron transfer theory to thoroughly investigate the selectivity of C1 products of electrochemical CO2R over the Ag(111) surface. We found that at an acidic condition of pH = 1.94, formate is the main product when U < -0.94 V via the CPET mechanism, whereas CO becomes the primary product when U > -0.94 V via the SEPT mechanism. Conversely, at an alkaline condition of pH = 13.95, formate is the main product following the SEPT mechanism. Our findings provide novel insights into the influence of external factors (applied potential and pH) on the product selectivity and hydrogenation mechanism of electrochemical CO2R.

8.
Angew Chem Int Ed Engl ; : e202407303, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38837854

RESUMEN

The Li-CO2 batteries utilizing greenhouse gas CO2 possess advantages of high energy density and environmental friendliness. However, these batteries following Li2CO3-product route typically exhibit low work voltage (<2.5 V) and energy efficiency. Herein, we have demonstrated for the first time that cobalt phthalocyanine (CoPc) as homogeneous catalyst can elevate the work plateau towards 2.98 V, which is higher than its theoretical discharge voltage without changing the Li2CO3-product route. This unprecedented discharge voltage is illustrated by mass spectrum and electrochemical analyses that CoPc has powerful adsorption capability with CO2 (-7.484 kJ mol-1) and forms discharge intermediate of C33H16CoN8O2. Besides high discharge capacity of 18724 mAh g-1 and robust cyclability over 1600 hours (1000 mAh g-1 cut-off) at a current density of 100 mA g-1, the batteries show high temperature adaptability (-30-80 °C). Our work is paving a promising avenue for the progress of high-efficiency Li-CO2 batteries.

9.
J Colloid Interface Sci ; 673: 312-320, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38878366

RESUMEN

Silicon is considered as a promising alternative to traditional graphite anode for lithium-ion batteries. Due to the dramatic volume expansion of silicon anode generated from the insertion of Li+ ions, the binder which can suppress the severe volume change and repeated massive stress impact during cycling is required greatly. Herein, we design a gradient-distributed two-component binder (GE-PAA) to achieve excellent cyclic stability, and reveal the mechanism of high energy dissipative binder stabilized silicon electrodes. The inner layer of the electrode is the polyacrylic acid polymer (PAA) with high Young's modulus, which is used as the skeleton binder to stabilize the silicon particle interface and the electrode structure. The outer layer is the gel electrolyte polymer (GE) with lower Young's modulus, which releases the stress generated during the lithiation and de-lithiation process effectively, achieving the high structural stability at the molecular level and silicon particles. Due to the synergistic effect of the gradient binder design, the silicon electrode retains a reversible capacity of 1557.4 mAh g-1 after 200 cycles at the current density of 0.5 C and 1539.2 mAh g-1 at a high rate of 1.8 C. This work provides a novel binder design strategy for Si anode with long cycle stability.

10.
Nat Commun ; 15(1): 4445, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38789453

RESUMEN

The noncovalent interactions of ammonium ion with multidentate oxygen-based host has never been reported as a reacting center in catalytic reactions. In this work, we report a reactivity enhancement process enabled by non-covalent interaction of ammonium ion, achieving the C-H functionalization of polyethylene glycols with acrylates by utilizing photoinduced co-catalysis of iridium and quinuclidine. A broad scope of alkenes can be tolerated without observing significant degradation. Moreover, this cyano-free condition respectively allows the incorporation of bioactive molecules and the PEGylation of dithiothreitol-treated bovine serum albumin, showing great potentials in drug delivery and protein modification. DFT calculations disclose that the formed α-carbon radical adjacent to oxygen-atom is reduced directly by iridium before acrylate addition. And preliminary mechanistic experiments reveal that the noncovalent interaction of PEG chain with the formed quinuclidinium species plays a unique role as a catalytic site by facilitating the proton transfer and ultimately enabling the transformation efficiently.

11.
Angew Chem Int Ed Engl ; : e202407194, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38818621

RESUMEN

Parasitic side reactions and dendrite growth on zinc anodes are formidable issues causing limited lifetime of aqueous zinc ion batteries (ZIBs). Herein, a spontaneous cascade optimization strategy is first proposed to regulate Zn2+ migration-diffusion behavior. Specifically, PAPE@Zn layer with separation-reconstruction properties is constructed in situ on Zn anode. In this layer, well-soluble poly(ethylene oxide) (PEO) can spontaneously separation to bulk electrolyte and weaken the preferential coordination between H2O and Zn2+ to achieve primary optimization. Meanwhile, poor-soluble polymerized-4-acryloylmorpholine (PACMO) is reconstructed on Zn anode as hydrophobic flower-like arrays with abundant zincophilic sites, further guiding the de-solvation and homogeneous diffusion of Zn2+ to achieve the secondary optimization. Cascade optimization effectively regulates Zn2+ migration-diffusion behavior, dendrite growth and side reactions of Zn anode are negligible, and the stability is significantly improved. Consequently, symmetrical cells exhibit stability over 4000 h (1 mA cm-2). PAPE@Zn//NH4 +-V2O5 full cells with a high current density of 15 A g-1 maintains 72.2 % capacity retention for 12000 cycles. Even better, the full cell demonstrates excellent performance of cumulative capacity of 2.33 Ah cm-2 at ultra-low negative/positive (N/P) ratio of 0.6 and a high mass-loading (~17 mg cm-2). The spontaneous cascade optimization strategy provides novel path to achieve high-performance and practical ZIBs.

12.
Angew Chem Int Ed Engl ; 63(32): e202407067, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-38771481

RESUMEN

The instability of the solid electrolyte interface (SEI) is a critical challenge for the zinc metal anodes, leading to an erratic electrode/electrolyte interface and hydrogen evolution reaction (HER), ultimately resulting in anode failure. This study uncovers that the fluorine species dissolution is the root cause of SEI instability. To effectively suppress the F- dissolution, an introduction of a low-polarity molecule, 1,4-thioxane (TX), is proposed, which reinforces the stability of the fluorine-rich SEI. Moreover, the TX molecule has a strong affinity for coordinating with Zn2+ and adsorbing at the electrode/electrolyte interface, thereby diminishing the activity of local water and consequently impeding SEI dissolution. The robust fluorine-rich SEI layer promotes the high durability of the zinc anode in repeated plating/stripping cycles, while concurrently suppressing HER and enhancing Coulombic efficiency. Notably, the symmetric cell with TX demonstrates exceptional electrochemical performance, sustaining over 500 hours at 20 mA cm-2 with 10 mAh cm-2. Furthermore, the Zn||KVOH full cell exhibits excellent capacity retention, averaging 6.8 mAh cm-2 with 98 % retention after 400 cycles, even at high loading with a lean electrolyte. This work offers a novel perspective on SEI dissolution as a key factor in anode failure, providing valuable insights for the electrolyte design in energy storage devices.

13.
Adv Mater ; 36(26): e2403229, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38598727

RESUMEN

Li-CO2 batteries are regarded as promising high-energy-density energy conversion and storage devices, but their practicability is severely hindered by the sluggish CO2 reduction/evolution reaction (CORR/COER) kinetics. Due to the various crystal structures and unique electronic configuration, Mn-based cathode catalysts have shown considerable competition to facilitate CORR/COER. However, the specific active sites and regulation principle of Mn-based catalysts remain ambiguous and limited. Herein, this work designs novel Mn dual-active sites (MOC) supported on N-doped carbon nanofibers and conduct a comprehensive investigation into the underlying relationship between different Mn active sites and their electrochemical performance in Li-CO2 batteries. Impressively, this work finds that owing to the in situ generation and stable existence of Mn(III), MOC undergoes obvious electrochemical reconstruction during battery cycling. Moreover, a series of characterizations and theoretical calculations demonstrate that the different electronic configurations and coordination environments of Mn(II) and Mn(III) are conducive to promoting CORR and COER, respectively. Benefiting from such a modulating behavior, the Li-CO2 batteries deliver a high full discharge capacity of 10.31 mAh cm-2, and ultra-long cycle life (327 cycles/1308 h). This fundamental understanding of MOC reconstruction and the electrocatalytic mechanisms provides a new perspective for designing high-performance multivalent Mn-integrated hybrid catalysts for Li-CO2 batteries.

14.
Sci Bull (Beijing) ; 69(11): 1706-1715, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38616150

RESUMEN

Traditional dual-ion lithium salts have been widely used in solid polymer lithium-metal batteries (LMBs). Nevertheless, concentration polarization caused by uncontrolled migration of free anions has severely caused the growth of lithium dendrites. Although single-ion conductor polymers (SICP) have been developed to reduce concentration polarization, the poor ionic conductivity caused by low carrier concentration limits their application. Herein, a dual-salt quasi-solid polymer electrolyte (QSPE), containing the SICP network as a salt and traditional dual-ion lithium salt, is designed for retarding the movement of free anions and simultaneously providing sufficient effective carriers to alleviate concentration polarization. The dual salt network of this designed QSPE is prepared through in-situ crosslinking copolymerization of SICP monomer, regular ionic conductor, crosslinker with the presence of the dual-ion lithium salt, delivering a high lithium-ion transference number (0.75) and satisfactory ionic conductivity (1.16 × 10-3 S cm-1 at 30 °C). Comprehensive characterizations combined with theoretical calculation demonstrate that polyanions from SICP exerts a potential repulsive effect on the transport of free anions to reduce concentration polarization inhibiting lithium dendrites. As a consequence, the Li||LiFePO4 cell achieves a long-cycle stability for 2000 cycles and a 90% capacity retention at 30 °C. This work provides a new perspective for reducing concentration polarization and simultaneously enabling enough lithium-ions migration for high-performance polymer LMBs.

15.
Angew Chem Int Ed Engl ; 63(23): e202404763, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38588210

RESUMEN

The electrochemical CO2 reduction reaction (eCO2RR) to multicarbon products has been widely recognized for Cu-based catalysts. However, the structural changes in Cu-based catalysts during the eCO2RR pose challenges to achieving an in-depth understanding of the structure-activity relationship, thereby limiting catalyst development. Herein, we employ constant-potential density functional theory calculations to investigate the sintering process of Cu single atoms of Cu-N-C single-atom catalysts into clusters under eCO2RR conditions. Systematic constant-potential ab initio molecular dynamics simulations revealed that the leaching of Cu-(CO)x moieties and subsequent agglomeration into clusters can be facilitated by synergistic adsorption of H and eCO2RR intermediates (e.g., CO). Increasing the Cu2+ concentration or the applied potential can efficiently suppress Cu sintering. Both microkinetic simulations and experimental results further confirm that sintered Cu clusters play a crucial role in generating C2 products. These findings provide significant insights into the dynamic evolution of Cu-based catalysts and the origin of their activity toward C2 products during the eCO2RR.

16.
Nano Lett ; 24(18): 5490-5497, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38657179

RESUMEN

The sodium (Na) metal anode encounters issues such as volume expansion and dendrite growth during cycling. Herein, a novel three-dimensional flexible composite Na metal anode was constructed through the conversion-alloying reaction between Na and ultrafine Sb2S3 nanoparticles encapsulated within the electrospun carbon nanofibers (Sb2S3@CNFs). The formed sodiophilic Na3Sb sites and the high Na+-conducting Na2S matrix, coupled with CNFs, establish a spatially confined "sodiophilic-conductive" network, which effectively reduces the Na nucleation barrier, improves the Na+ diffusion kinetics, and suppresses the volume expansion, thereby inhibiting the Na dendrite growth. Consequently, the Na/Sb2S3@CNFs electrode exhibits a high Coulombic efficiency (99.94%), exceptional lifespan (up to 2800 h) at high current densities (up to 5 mA cm-2), and high areal capacities (up to 5 mAh cm-2) in symmetric cells. The coin-type full cells assembled with a Na3V2(PO4)3/C cathode demonstrate significant enhancement in electrochemical performance. The flexible pouch cell achieves an excellent energy density of 301 Wh kg-1.

17.
Small Methods ; : e2301542, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38602282

RESUMEN

Developing Two-dimensional (2D) Mo-based heterogeneous nanomaterials is of great significance for energy conversion, especially in alkaline hydrogen evolution reaction (HER), however, it remains a challenge to identify the active sites at the interface due to the structure complexity. Herein, the real active sites are systematically explored during the HER process in varied Mo-based 2D materials by theoretical computational and magnetron sputtering approaches first to filtrate the candidates, then successfully combined the MoSi2 and MoO3 together through Oxygen doping to construct heterojunctions. Benefiting from the synergistic effects between the MoSi2 and MoO3, the obtained MoSi2@MoO3 exhibits an unprecedented overpotential of 72 mV at a current density of 10 mA cm-2. Density functional theory calculations uncover the different Gibbs free energy of hydrogen adsorption (ΔGH*) values achieved at the interfaces with different sites as adsorption sites. The results can facilitate the optimization of heterojunction electrocatalyst design principles for the Mo-based 2D materials.

18.
ACS Appl Mater Interfaces ; 16(10): 12544-12553, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38440797

RESUMEN

Amino acids are considered effective additives for regulating the electric double layer (EDL) in zinc-ion battery (ZIB) electrolytes. In comparison to their polar counterparts, nonpolar amino acids have received less attention in research. We demonstrated that isoleucine (ILE), benefiting from its nonpolar alkyl chain, emerges as a highly suitable electrolyte additive for aqueous ZIBs. ILE molecules preferentially adsorb onto the anode surface of zinc metal, subsequently creating a locally hydrophobic EDL facilitated by the alkyl chain. On one hand, this enhances the thermodynamic stability at the anode, while on the other hand, it accelerates the desolvation process of zinc ions, thereby improving the kinetics. Benefiting from the unique properties of ILE molecules, Cu//Zn cells with the ILE additive ultimately achieved an extended cycle life of 2600 cycles with an average coulombic efficiency of 99.695%, significantly outperforming other amino acid additives reported in the literature.

19.
Adv Mater ; 36(23): e2313273, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38533901

RESUMEN

The rapid growth of electric vehicle use is expected to cause a significant environmental problem in the next few years due to the large number of spent lithium-ion batteries (LIBs). Recycling spent LIBs will not only alleviate the environmental problems but also address the challenge of limited natural resources shortages. While several hydro- and pyrometallurgical processes are developed for recycling different components of spent batteries, direct regeneration presents clear environmental, and economic advantages. The principle of the direct regeneration approach is restoring the electrochemical performance by healing the defective structure of the spent materials. Thus, the development of direct regeneration technology largely depends on the formation mechanism of defects in spent LIBs. This review systematically details the degradation mechanisms and types of defects found in diverse cathode materials, graphite anodes, and current collectors during the battery's lifecycle. Building on this understanding, principles and methodologies for directly rejuvenating materials within spent LIBs are outlined. Also the main challenges and solutions for the large-scale direct regeneration of spent LIBs are proposed. Furthermore, this review aims to pave the way for the direct regeneration of materials in discarded lithium-ion batteries by offering a theoretical foundation and practical guidance.

20.
Small ; 20(27): e2310530, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38317526

RESUMEN

Rechargeable aprotic Li-CO2 batteries have aroused worldwide interest owing to their environmentally friendly CO2 fixation ability and ultra-high specific energy density. However, its practical applications are impeded by the sluggish reaction kinetics and discharge product accumulation during cycling. Herein, a flexible composite electrode comprising CoSe2 nanoparticles embedded in 3D carbonized melamine foam (CoSe2/CMF) for Li-CO2 batteries is reported. The abundant CoSe2 clusters can not only facilitate CO2 reduction/evolution kinetics but also serve as Li2CO3 nucleation sites for homogeneous discharge product growth. The CoSe2/CMF-based Li-CO2 battery exhibits a large initial discharge capacity as high as 5.62 mAh cm-2 at 0.05 mA cm-2, a remarkably small voltage gap of 0.72 V, and an ultrahigh energy efficiency of 85.9% at 0.01 mA cm-2, surpassing most of the noble metal-based catalysts. Meanwhile, the battery demonstrates excellent cycling stability of 1620 h (162 cycles) at 0.02 mA cm-2 with an average overpotential of 0.98 V and energy efficiency of 85.4%. Theoretical investigations suggest that this outstanding performance is attributed to the suitable CO2/Li adsorption and low Li2CO3 decomposition energy. Moreover, flexible Li-CO2 pouch cell with CoSe2/CMF cathode displays stable power output under different bending deformations, showing promising potential in wearable electronic devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA