Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
J Control Release ; 372: 874-884, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38977133

RESUMEN

Dexamethasone (DEX) has been demonstrated to inhibit the inflammatory corneal neovascularization (CNV). However, the therapeutic efficacy of DEX is limited by the poor bioavailability of conventional eye drops and the increased risk of hormonal glaucoma and cataract associated with prolonged and frequent usage. To address these limitations, we have developed a novel DEX-loaded, reactive oxygen species (ROS)-responsive, controlled-release nanogel, termed DEX@INHANGs. This advanced nanogel system is constructed by the formation of supramolecular host-guest complexes by cyclodextrin (CD) and adamantane (ADA) as a cross-linking force. The introduction of the ROS-responsive material, thioketal (TK), ensures the controlled release of DEX in response to oxidative stress, a characteristic of CNV. Furthermore, the nanogel's prolonged retention on the corneal surface for over 8 h is achieved through covalent binding of the integrin ß1 fusion protein, which enhances its bioavailability. Cytotoxicity assays demonstrated that DEX@INHANGs was not notably toxic to human corneal epithelial cells (HCECs). Furthermore, DEX@INHANGs has been demonstrated to effectively inhibit angiogenesis in vitro. In a rabbit model with chemically burned eyes, the once-daily topical application of DEX@INHANGs was observed to effectively suppress CNV. These results collectively indicate that the nanomedicine formulation of DEX@INHANGs may offer a promising treatment option for CNV, offering significant advantages such as reduced dosing frequency and enhanced patient compliance.


Asunto(s)
Neovascularización de la Córnea , Dexametasona , Especies Reactivas de Oxígeno , Animales , Conejos , Neovascularización de la Córnea/tratamiento farmacológico , Dexametasona/administración & dosificación , Dexametasona/farmacocinética , Humanos , Especies Reactivas de Oxígeno/metabolismo , Nanogeles/química , Preparaciones de Acción Retardada , Córnea/metabolismo , Córnea/efectos de los fármacos , Masculino , Inhibidores de la Angiogénesis/administración & dosificación , Inhibidores de la Angiogénesis/farmacocinética , Inhibidores de la Angiogénesis/farmacología , Inhibidores de la Angiogénesis/química , Línea Celular , Polietilenglicoles/química , Polietilenglicoles/administración & dosificación , Administración Oftálmica , Adamantano/administración & dosificación , Adamantano/análogos & derivados , Ciclodextrinas/química , Antiinflamatorios/administración & dosificación , Polietileneimina/química , Polietileneimina/administración & dosificación , Liberación de Fármacos
2.
Nat Commun ; 15(1): 328, 2024 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-38184609

RESUMEN

Membrane-camouflaged nanomedicines often suffer from reduced efficacy caused by membrane protein disintegration and spatial disorder caused by separation and reassembly of membrane fragments during the coating process. Here we show that intracellularly gelated macrophages (GMs) preserve cell membrane structures, including protein content, integration and fluidity, as well as the membrane lipid order. Consequently, in our testing GMs act as cellular sponges to efficiently neutralize various inflammatory cytokines via receptor-ligand interactions, and serve as immune cell-like carriers to selectively bind inflammatory cells in culture medium, even under a flow condition. In a rat model of collagen-induced arthritis, GMs alleviate the joint injury, and suppress the overall arthritis severity. Upon intravenous injection, GMs efficiently accumulate in the inflammatory lungs of acute pneumonia mice for anti-inflammatory therapy. Conveniently, GMs are amenable to lyophilization and can be stored at ambient temperatures for at least 1 month without loss of integrity and bio-activity. This intracellular gelation technology provides a universal platform for targeted inflammation neutralization treatment.


Asunto(s)
Artritis Experimental , Ratas , Ratones , Animales , Artritis Experimental/tratamiento farmacológico , Medios de Cultivo , Citocinas , Liofilización , Macrófagos
3.
J Control Release ; 366: 194-203, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38142965

RESUMEN

Glioblastoma multiforme (GBM) is one of the most common primary intracranial tumors in the central nervous system with poor prognosis, high invasiveness, risk of recurrence and low survival rate. Thus, it is urgent and vital to develop drug effective delivery systems that efficiently to traverse the blood-brain barrier and targeted transport therapeutic agents into the GBM tumor site for the treatment of brain tumors. Recently, amphiphilic cucurbit[7]uril-polyethylene glycol-hydrophobic Chlorin e6 (CB[7]-PEG-Ce6) polymer was designed, prepared, and self-assembled into micells (CPC) in an aqueous solution, and chemo drug methyl-triazeno-imidazole-carboxamide (MTIC), loaded into the cavity of CB[7] was subsequently coated with hybrid membrane mUMH (HMC3 membrane: macrophage membrane: U87MG membrane = 1:1:2) to afford mUMH@CPC@MTIC. The surface hybrid membrane mUMH potentially enhance the targeted delivery of CPC@MTIC to GBM tissue. Bioactive MTIC was released from the cavity of CB[7] in response to the high spermine level in GBM tumor microenvironments for effective tumor chemotherapy. The biomimetic mUMH@CPC@MTIC exhibited superior antitumor efficacy against GBM in mice. These findings provide new strategies for the design of biomimetic nanoparticle-based drug delivery systems and promising therapy of GBM.


Asunto(s)
Neoplasias Encefálicas , Dacarbazina/análogos & derivados , Glioblastoma , Animales , Ratones , Micelas , Glioblastoma/tratamiento farmacológico , Microambiente Tumoral , Membrana Celular , Neoplasias Encefálicas/tratamiento farmacológico , Imidazoles , Sistema de Administración de Fármacos con Nanopartículas
4.
Adv Sci (Weinh) ; 10(34): e2304407, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37850572

RESUMEN

Although various ferroptosis inducers including magnetic nanoparticles (Fe3 O4 ) and iron-organic frameworks have been applied in cancer treatment, the mild immunogenicity, low targeting efficiency to the tumor, and poor tissue penetration have limited the therapeutic efficacy. Herein, a supramolecularly engineered conjugate between living bacteria (facultative anaerobic Salmonella typhimurium VNP20009, VNP) and cancer cell membranes-coated Fe3 O4 nanoparticles is developed for improving targeted delivery of Fe3 O4 nanoparticles into the tumor tissue and for synergistic ferroptosis and immunotherapy of tumor. The enhanced ferroptosis induced by both Fe3 O4 nanoparticles and the loaded ferroptosis inducing agent (sulfasalazine (SAS)) effectively inhibits tumor growth and generates immune response via immunogenic cell death (ICD). The colonization of VNP in tumors also induces adaptive immune responses and further promotes ferroptosis. Fundamentally, the supramolecular conjugate of VNP and cell membranes-coated Fe3 O4 can potentiate the therapeutic capability of each other through mutually magnifying the ferroptosis and immunotherapy, resulting in significantly enhanced antitumor effects.


Asunto(s)
Ferroptosis , Nanopartículas de Magnetita , Neoplasias , Humanos , Nanopartículas de Magnetita/uso terapéutico , Neoplasias/terapia , Membrana Celular , Inmunoterapia
5.
J Control Release ; 360: 82-92, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37331605

RESUMEN

Camptothecin (CPT) and cisplatin (Pt) have shown synergistic effects on a variety of cancers during preclinical and clinical studies. However, the ratio of the two drugs often could not be precisely regulated in different delivery systems, which hinders the desired synergistic effect. In addition, the low delivery efficiency of the two drugs to the tumor further impedes the ideal therapeutic outcomes. Herein, we report that a platelet-mimicking supramolecular nanomedicine (SN) could precisely control of the ratio of CPT and Pt with a high tumor accumulation rate for cascade amplification of synergistic chemotherapy. The SN was fabricated via the host-guest interaction between cucurbit[7]uril conjugated hyaluronic acid (HA-CB[7]) and adamantane (ADA) respectively functionalized CPT- and Pt-based prodrugs. The ratio of CPT and Pt in the SN could be facilely regulated by simply controlling the loading ratio, based on the strong binding affinity between CB[7] and ADA, and SN60 with 60% CPT and 40% Pt showed the highest synergistic effects on 4T1 cells. To improve the tumor accumulation efficiency of SN, 5,6-dimethylxanthenone-4-acetic acid (DMXAA, a tumor vasculature-disruptive agent) was loaded into the optimized SN and then coated with platelet membrane to yield platelet-mimicking supramolecular nanomedicine (D@SN-P). D@SN-P could first passively accumulate in tumors owing to the enhanced permeability and retention (EPR) effect after intravenous administration. The initially release of DMXAA from D@SN-P could induce tumor vascular disruption, and the resultant epithelial collagen exposure around the disrupted tumor vasculature provided a target for further recruitment of platelet-mimicking SN, leading to cascade amplification of tumor accumulation with synergistic chemotherapy. Hence, this platelet-mimicking supramolecular nanomedicine presents a universal supramolecular strategy to finely regulate the ratio of loaded pro-drugs, and improve the accumulation efficiency to amplify chemotherapy via platelet-mimics.


Asunto(s)
Neoplasias , Profármacos , Humanos , Camptotecina , Nanomedicina , Neoplasias/tratamiento farmacológico , Cisplatino/uso terapéutico , Línea Celular Tumoral
6.
ACS Appl Bio Mater ; 6(9): 3463-3471, 2023 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-37161309

RESUMEN

UV exposure often triggers photoaging of the skin. Pharmacological treatment suffers from severe side effects as well as poor efficacy because of insufficient skin penetration. Dissolved oxygen has been previously shown to reverse photoaged skin; however, the treatment is often limited by the availability of equipment (e.g., high-pressure oxygen). Poor oxygen diffusion into the skin has also limited its therapeutic efficacy. Herein, we developed a microneedle patch to deliver living microalgae to the deeper layers of the skin for efficient oxygenation and reversal of photoaging. The continuous release of oxygen from microalgae in the skin through photosynthesis reversed the inflammatory microenvironment and reduced reactive oxygen species levels in the photodamaged skin, leading to collagen regeneration and reduced wrinkles. This study provides not only a means for highly efficient skin oxygenation and reversal of photoaging but also an important theoretical basis for the clinical treatment of photoaging.


Asunto(s)
Microalgas , Envejecimiento de la Piel , Rayos Ultravioleta/efectos adversos , Oxígeno/farmacología , Piel
7.
J Control Release ; 357: 572-579, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37054780

RESUMEN

Chemotherapy based on molecular drugs remains the most frequently used approach for the therapy of tumors, however their poor specificity, severe side effects and tumor resistance often seriously hinder their applications. It is therefore desirable to develop a new, alternative therapeutic strategy for tumor treatment without traditional chemotherapeutic drugs. Herein, we report a drug-free tumor therapy approach involving spermine (SPM)-responsive intracellular biomineralization in tumor cells. In this work, we designed calcium carbonate (CaCO3) nanoparticles capped with folic acid and supramolecular peptides, which could target tumor cells and rapidly self-aggregate into micron-sized CaCO3 aggregates in SPM-overexpressed tumor cells. Due to the extended intracellular retention, CaCO3 aggregates could induce intracellular biomineralization and Ca2+ overload of tumor cell, leading to mitochondrial damage and cellular apoptosis, resulting in effective inhibition of tumor growth without serious side effects otherwise seen in conventional chemotherapy.


Asunto(s)
Nanopartículas , Neoplasias , Humanos , Espermina/uso terapéutico , Biomineralización , Neoplasias/tratamiento farmacológico , Portadores de Fármacos , Carbonato de Calcio/química
8.
J Control Release ; 357: 371-378, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37030543

RESUMEN

Drug-resistant infections caused by intracellular bacteria, such as methicillin-resistant Staphylococcus aureus (MRSA), which are often hidden inside macrophages, pose a significant threat to human health. Various nanomedicines have been developed to combat intracellular MRSA; however, their poor uptake and fast clearance from macrophages often result in insufficient enrichment of antibacterial agents intracellularly, leading to low antibacterial efficacy. Here, we developed bacterial membrane-coated mesoporous SiO2 nanoparticles (MSN) loaded with vancomycin (Van), a classic antibiotic. These nanoparticles can be specifically recognized and internalized by macrophages and self-aggregated into micron-sized MSN clusters based on cucurbit[7]uril-adamantane host-guest interactions, allowing for slow clearance and extended retention in infected macrophages. The acid-triggered, sustainable release of Van from MSN aggregates effectively killed MRSA in infected macrophages and significantly alleviated inflammation caused by intracellular bacterial infections both in vitro and in vivo. This work not only provides a practical solution to effectively treat drug-resistant intracellular infections but also offers new insights for the design and development of antibacterial nanomaterials.


Asunto(s)
Antiinfecciosos , Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Humanos , Nanomedicina , Dióxido de Silicio , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Vancomicina/farmacología , Bacterias , Infecciones Estafilocócicas/tratamiento farmacológico , Pruebas de Sensibilidad Microbiana
9.
Acta Biomater ; 164: 397-406, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37004784

RESUMEN

Dual- or multi-modality combination therapy has become one of the most effective strategies to overcome drug resistance in cancer therapy, and the optimized ratio of the therapeutic agents working on the tumor greatly affects the therapeutic outcomes. However, the absence of a facile method to optimize the ratio of therapeutic agents in nanomedicine has, at least in part, impaired the clinical potential of combination therapy. Herein, a new cucurbit[7]uril (CB[7])-conjugated hyaluronic acid (HA) based nanomedicine was developed, in which both chlorin e6 (Ce6) and oxaliplatin (OX) were co-loaded non-covalently at an optimized ratio via facile host-guest complexation, for optimal, combined photodynamic therapy (PDT)/chemotherapy. To maximize the therapeutic efficacy, a mitochondrial respiration inhibitor, atovaquone (Ato), was also loaded into the nanomedicine to limit consumption of oxygen by the solid tumor, sparing oxygen for more efficient PDT. Additionally, HA on the surface of nanomedicine allowed targeted delivery to cancer cells with over-expressed CD44 receptors (such as CT26 cell lines). Thus, this supramolecular nanomedicine platform with an optimal ratio of photosensitizer and chemotherapeutic agent not only provides an important new tool for enhanced PDT/chemotherapy of solid tumors, but also offers a CB[7]-based host-guest complexation strategy to facilely optimize the ratio of therapeutic agents for multi-modality nanomedicine. STATEMENT OF SIGNIFICANCE: Chemotherapy remains the most common modality for cancer treatment in clinical practice. Combination therapy by co-delivery of two or more therapeutic agents has been recognized as one of the most effective strategies to improve therapeutic outcome of cancer treatment. However, the ratio of loaded drugs could not be facilely optimized, which may greatly affect the combination efficiency and overall therapeutic outcome. Herein, we developed a hyaluronic acid based supramolecular nanomedicine with facile method to optimize the ratio of two therapeutic agents for improved therapeutic outcome. This supramolecular nanomedicine not only provides an important new tool for enhanced photodynamic therapy/chemotherapy of solid tumors, but also offers insights in using macrocyclic molecule-based host-guest complexation to facilely optimize the ratio of therapeutic agents in multi-modality nanomedicine.


Asunto(s)
Nanopartículas , Neoplasias , Fotoquimioterapia , Porfirinas , Humanos , Oxaliplatino , Nanomedicina , Ácido Hialurónico/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Neoplasias/tratamiento farmacológico , Porfirinas/farmacología , Oxígeno , Línea Celular Tumoral
10.
ACS Nano ; 17(7): 6519-6533, 2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-36971410

RESUMEN

Thrombolysis with tissue plasminogen activator (tPA) provides the most common therapy for ischemic stroke onset within the past 4.5 h. However, enhanced neutrophil infiltration and secondary blood-brain barrier injury caused by tPA administration have limited its therapeutic application, and tPA treatment is often accompanied by hemorrhagic transformation. To overcome the limitations of thrombolysis by tPA, maximize the therapeutic efficacy, and improve the safety, herein, we report a cryo-shocked platelet-based cell-hitchhiking drug delivery system, which consists of cryo-shocked platelet (CsPLT) and reactive oxygen species (ROS)-responsive liposomes loaded with thrombolytic tPA and anti-inflammation drug aspirin (ASA). CsPLT and liposomes were facilely conjugated via host-guest interactions. Under the guidance of CsPLT, it selectively accumulated in the thrombus site and quickly released the therapeutic payloads in response to the high ROS. tPA subsequently exhibited localized thrombolytic activity to suppress the expansion of thrombus, while ASA assisted in the inactivation of reactive astrogliosis, microglial/macrophage, and obstruction of neutrophil infiltration. This cryo-shocked platelet-hitchhiking tPA/ASA delivery system not only improves the thrombus-targeting efficiency of the two drugs for highly localized thrombolytic effects and anti-inflammation actions and platelets inactivation but also provides insights to the development of targeted drug delivery systems for thromboembolic disease treatment.


Asunto(s)
Accidente Cerebrovascular , Trombosis , Humanos , Activador de Tejido Plasminógeno/farmacología , Activador de Tejido Plasminógeno/uso terapéutico , Especies Reactivas de Oxígeno/uso terapéutico , Liposomas/uso terapéutico , Nanomedicina , Fibrinolíticos/farmacología , Fibrinolíticos/uso terapéutico , Aspirina/uso terapéutico , Trombosis/tratamiento farmacológico , Accidente Cerebrovascular/tratamiento farmacológico
11.
Theranostics ; 13(2): 611-620, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36632232

RESUMEN

Inspired by the attractions of fruit flies to polyamines of rotten food, we developed a facile, bio-orthogonal, supramolecular homing and hunting strategy, relying on the elevated levels of polyamines in tumor as the natural guest cues to attract cucurbit [7] uril (CB[7]) functionalized liposomes to the tumor site, owing to the strong, bio-orthogonal host-guest interactions between CB[7] and polyamines. This supramolecular homing enabled a high targeting efficiency of CB[7] functionalized liposomes, and allowed better tissue penetration and retention in breast tumor. The employment of a receptor functionalized nanomedicine for direct tropism towards endogenous biomarkers as guest cues, reminiscent of natural chemotaxis but in a bio-orthogonal manner, has not been previously reported, offering new sights to the design and development of new nanoformulations that rely on bio-orthogonal interactions for chemotaxis-guided targeting.


Asunto(s)
Neoplasias , Poliaminas , Humanos , Señales (Psicología) , Liposomas
12.
Carbohydr Polym ; 296: 119968, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36088007

RESUMEN

Psoriasis seriously harms physical and mental health of patients. Hyaluronic acid (HA)-based topical formulation can increase drug concentration in psoriatic skin via CD44-assisted targeting. Herein, we developed a supramolecular medicine composed of curcumin-loaded HA-cucurbit[7]uril (HA-CB[7]@Cur), which could efficiently sequester polyamines (PAs) via host-guest interactions of CB[7] and PAs to suppress RNA-PAs immunocomplex formation. Meanwhile, anti-psoriasis drug Cur could be released from HA-CB[7]@Cur by PAs. With phenotypical disease evaluation, psoriasis area measurements and severity index scoring, and histological characterizations, we demonstrate topical administration of Carbopol gel formulation of HA-CB[7]@Cur on psoriasis-like skin in mice exhibited an enhanced anti-psoriasis activity, in comparison with gel of free Cur or HA-CB[7]. Cytokine expression analysis in psoriatic skin also supported the observed therapeutic outcomes. We provide a novel and effective supramolecular strategy to realize cooperative anti-psoriasis via controlled release of curcumin and PAs sequestration, which can be potentially expanded to treat other PA-involved skin inflammatory diseases.


Asunto(s)
Curcumina , Psoriasis , Animales , Curcumina/farmacología , Curcumina/uso terapéutico , Portadores de Fármacos/uso terapéutico , Ácido Hialurónico/uso terapéutico , Ratones , Poliaminas , Psoriasis/tratamiento farmacológico , Psoriasis/patología
13.
J Control Release ; 350: 777-786, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35995300

RESUMEN

Acute pneumonia is an inflammatory syndrome often associated with severe multi-organ dysfunction and high mortality. The therapeutic efficacy of current anti-inflammatory medicines is greatly limited due to the short systemic circulation and poor specificity in the lungs. New drug delivery systems (DDS) are urgently needed to efficiently transport anti-inflammatory drugs to the lungs. Here, we report an inflammation-responsive supramolecular erythrocytes-hitchhiking DDS to extend systemic circulation of the nanomedicine via hitchhiking red blood cells (RBCs) and specifically "drop off" the payloads in the inflammatory lungs. ß-cyclodextrin (ß-CD) modified RBCs and ferrocene (Fc) modified liposomes (NP) were prepared and co-incubated to attach NP to RBCs via ß-CD/Fc host-guest interactions. RBCs extended the systemic circulation of the attached NP, meanwhile, the NP may get detached from RBCs due to the high ROS level in the inflammatory lungs. In acute pneumonia mice, this strategy delivered curcumin specifically to the lungs and effectively alleviated the inflammatory syndrome.


Asunto(s)
Curcumina , Neumonía , beta-Ciclodextrinas , Animales , Curcumina/farmacología , Sistemas de Liberación de Medicamentos , Eritrocitos , Compuestos Ferrosos , Liposomas , Metalocenos/farmacología , Ratones , Neumonía/tratamiento farmacológico , Especies Reactivas de Oxígeno
14.
Acta Biomater ; 149: 248-257, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35820594

RESUMEN

Excessive bleeding has always been of great medical challenge, particularly in trauma and surgery. Due to the fast clearance of medicine and complex hemodynamics during hemorrhage, it is often difficult to achieve rapid and effective hemostasis on irregularly shaped, noncompressible visceral bleeding wounds. Herein, we report a hemostatic derived from supramolecularly functionalized platelets (SPLTs), showing rapid hemorrhage controlling effects via efficiently targeting injured vessels and in-situ aggregation. Von Willebrand factor-binding peptide (VBP) modified hyaluronic acid (HA-VBP) decorated platelets (PLTs) were fabricated via supramolecular host-guest interactions between cucurbit[7]uril (CB[7], a host molecule) modified on HA-VBP (HA-CB[7]-VBP) and adamantane (ADA, a guest molecule) anchored on the surface of PLTs (ADA-PLTs). The SPLTs demonstrated approximately 10-fold improvements than the native PLTs in the targeting efficiency into the injured vessels in mice upon intravenous injection. More significantly, the total bleeding time and bleeding volume were dramatically reduced down to less than 1/4 and 1/10 of the control group, respectively, in both external and internal major bleeding mice models. This SPLTs provide a facile yet effective approach for rapid control of major hemorrhage and offers important new insights to the design and development PLTs-based hemostatics. STATEMENT OF SIGNIFICANCE: Hemorrhage is one of the greatest threats to humans in trauma and surgery. To reduce bleeding volume and time, transfusion of hematological products such as platelets (PLTs)-rich plasma is one of the most commonly used therapeutics, but with low targeting and hemostatic efficiency. Thus, engineered PLTs with expanded structural repertoire and functionalities are in urgent clinical needs. Herein, we developed supramolecularly functionalized PLTs (SPLTs), prepared with a mild and facile approach, for rapid control of hemorrhage with significantly enhanced targeting efficiency. The SPLTs not only provide a facile approach for rapid control of major hemorrhage, but also offer important new insights into the development PLTs-based hemostatics.


Asunto(s)
Plaquetas , Hemostáticos , Animales , Plaquetas/química , Hemorragia/terapia , Hemostasis , Humanos , Ratones , Plasma
15.
Small ; 18(30): e2201971, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35689511

RESUMEN

Improving the precise accumulation and retention of nanomedicines in tumor cells is one of the keys to effective therapy of tumors. Herein, supramolecular peptides capped Au nanocages (AuNCs) that may self-aggregate into micron-sized clusters intracellularly in response to spermine (SPM), leading to specific accumulation and retention of AuNCs in SPM-overexpressed tumor cells, are developed. In this design, polydopamine (PDA) is in situ coated on the surface of AuNCs with doxorubicin (DOX) encapsulated. A small peptide, Phe-Phe-Val-Leu-Lys (FFVLK), is conjugated with PDA via esterification, and cucurbit[7]uril (CB[7]) is threaded onto the N-terminal Phe via host-guest interactions. Once the supramolecular peptide (CB[7]-FFVLK) capped AuNCs are internalized in SPM-overexpressed breast cancer cells, CB[7] can be competitively removed from FFVLK by SPM, due to the much higher binding affinity between CB[7] and SPM than that between CB[7] and Phe, leading to exposure of free FFVLK, which can subsequently self-assemble and induce the aggregation of AuNCs to micron-sized clusters, resulting in the significantly enhanced accumulation and retention of DOX-loaded AuNCs in tumor cells. Under NIR laser irradiation, the enhanced photothermal conversion of AuNCs aggregates, together with photothermia-induced release of DOX leads to synergistic photothermal therapy and chemotherapy against breast cancer.


Asunto(s)
Neoplasias de la Mama , Oro , Neoplasias de la Mama/tratamiento farmacológico , Doxorrubicina/química , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Femenino , Oro/química , Humanos , Fototerapia/métodos , Terapia Fototérmica , Espermina
16.
Adv Healthc Mater ; 11(16): e2200416, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35708176

RESUMEN

Thromboembolic stroke is typically characterized by the activation of platelets, resulting in thrombus in the cerebral vascular system, leading to high morbidity and mortality globally. Intravenous thrombolysis by tissue plasminogen activator (tPA) administration within 4.5 h from the onset of symptoms is providing a standard therapeutic strategy for ischemic stroke, but this reagent simultaneously shows potential serious adverse effects, e.g., hemorrhagic transformation. Herein, a novel delivery platform based on Annexin V and platelet membrane is developed for tPA (APLT-PA) to enhance targeting efficiency, therapeutic effects, and reduce the risk of intracerebral hemorrhage in acute ischemic stroke. After preparation by extrusion of platelet membrane and subsequent insertion of Annexin V to liposomes, APLT-PA exhibits a high targeting efficiency to activated platelet in vitro and thrombosis site in vivo, due to the binding to phosphatidylserine (PS) and activated platelet membrane proteins. One dose of APLT-PA leads to obvious thrombolysis and significant improvement of neurological function within 7 days in mice with photochemically induced acute ischemic stroke. This study provides a novel, safe platelet-biomimetic nanomedicine for precise thrombolytic treatment of acute ischemic stroke, and offers new theories for the design and exploitation of cell-mimetic nanomedicine for diverse biomedical applications.


Asunto(s)
Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Animales , Anexina A5/uso terapéutico , Biomimética , Plaquetas , Fibrinolíticos , Ratones , Nanomedicina , Accidente Cerebrovascular/tratamiento farmacológico , Terapia Trombolítica/efectos adversos , Activador de Tejido Plasminógeno/efectos adversos
17.
Acta Biomater ; 147: 356-365, 2022 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-35577046

RESUMEN

Nanoparticles (NPs) modified with targeting ligands have often shown great potential in targeted drug delivery for tumor therapy. However, the clearance of NPs by the monocyte-phagocyte system (MPS) and the relatively low cellular uptake by tumor cells have significantly limited the antitumor efficacy of a variety of nanomedicines. Tumor microenvironment-mediated multidrug resistance also reduces the antitumor efficacy of internalized nanomedicines. Herein, we developed an innovative nanomedicine for combined chemo-photodynamic therapy of melanoma through targeted drug delivery and significantly improved the cellular uptake of the nanomedicine through the charge-reversal phenomenon. An amphiphilic platinum (IV)-polyethylenimine-chlorin e6 (Pt(IV)-PEI-Ce6) polymer was designed, prepared, and self-assembled into NPs (PPC) in an aqueous solution, and these NPs were subsequently coated with hyaluronic acid (HA) to afford PPC@HA. The surface-coated HA provided PPC with a negatively charged surface potential to reduce the clearance by the MPS during systemic circulation and enhanced the targeted delivery of PPC to CD44-overexpressing melanoma cells. Upon accumulation in the tumor site, hyaluronidase overexpressed in the tumor induced HA degradation to release the positively charged PPC, resulting in an increased internalization of PPC into tumor cells. Bioactive Pt(II) was released in response to high glutathione level in the tumor cells for effective tumor chemotherapy. Under 650 nm laser irradiation, Ce6 produced reactive oxygen species (ROS), thus driving photodynamic therapy. Finally, PPC@HA exhibited combined photodynamic-chemotherapeutic antitumor efficacy against the melanoma cells in mice. STATEMENT OF SIGNIFICANCE: Tumors are one of the greatest threats to human health, and chemotherapy has been one of the most common therapeutic modalities for treating tumors; however, many challenges related to chemotherapy remain, such as low delivery efficiency, side effects, and unsatisfactory therapeutic efficacy. Nanomedicines modified with targeting ligands have often shown great potential in improving targeted drug delivery for tumor therapy; however, the clearance of nanomaterials by the monocyte-phagocyte system and the relatively low cellular uptake by tumor cells have significantly limited the antitumor efficacy of a variety of nanomedicines. Herein, we developed a novel charge-reversal-based, hyaluronic acid-coated, Pt(IV) prodrug and chlorin e6-based nanomedicine to improve systemic circulation and targeted accumulation of the nanomedicine in the tumor tissue and to enhance its intracellular uptake. This nanomedicine may provide a potential new platform to improve the drug content inside tumor cells and to effectively inhibit tumor growth through combined chemotherapy and photodynamic therapy.


Asunto(s)
Melanoma , Nanopartículas , Fotoquimioterapia , Porfirinas , Animales , Línea Celular Tumoral , Ácido Hialurónico/farmacología , Ligandos , Melanoma/tratamiento farmacológico , Ratones , Nanomedicina , Nanopartículas/uso terapéutico , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Porfirinas/farmacología , Microambiente Tumoral
18.
Eur J Nucl Med Mol Imaging ; 49(4): 1200-1210, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34816296

RESUMEN

Benefiting from their unique advantages, including reversibly switchable structures, good biocompatibility, facile functionalization, and sensitive response to biological stimuli, supramolecular biomaterials have been widely applied in biomedicine. In this review, the representative achievements and trends in the design of supramolecular biomaterials (mainly those derived from biomacromolecules) with specific macromolecules including peptides, deoxyribonucleic acid, and polysaccharides, as well as their applications in bio-imaging and imaging-guided therapy are summarized. This review will serve as an important summary and "go for" reference for explorations of the applications of supramolecular biomaterials in bio-imaging and image-guided therapy, and will promote the development of supramolecular chemistry as an emerging interdisciplinary research area.


Asunto(s)
Materiales Biocompatibles , Péptidos , Materiales Biocompatibles/química , Materiales Biocompatibles/uso terapéutico , Humanos , Péptidos/uso terapéutico
19.
Nanoscale Horiz ; 6(11): 907-912, 2021 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-34694311

RESUMEN

In this design, small CuS nanoparticles (NPs) were intracellularly self-assembled into large supramolecular aggregates via host-guest interactions between sequentially internalized ß-cyclodextrin-capped CuS NPs and ferrocene-capped CuS NPs inside macrophages, thus the efflux of CuS NPs was significantly inhibited during the macrophage-hitchhiking delivery. Biodistribution studies in mice confirmed the dramatically enhanced deposition of CuS NPs in the tumor tissue of mice injected with macrophages carrying intracellular CuS aggregates, in comparison to that of mice treated with macrophages carrying CuS NPs. In response to the inflammatory tumor microenvironment, the oxidation of ferrocene would dissociate the ß-cyclodextrin-ferrocene host-guest pair, driving disassembly of the CuS aggregates and release of small CuS NPs for deep tissue penetration and enhanced photothermal therapy. This precisely controlled intracellular self-assembly and disassembly of the nanomedicine inside macrophages provides a novel cell-hitchhiking delivery strategy that not only minimizes premature leakage of the nanomedicine but also greatly improves the delivery efficiency and tumor penetration for safe, effective tumor therapy.


Asunto(s)
Nanopartículas , Neoplasias , Animales , Cobre , Macrófagos , Ratones , Terapia Fototérmica , Distribución Tisular , Microambiente Tumoral
20.
Small ; 17(43): e2101332, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34405525

RESUMEN

Inorganic nanomedicine has attracted increasing attentions in biomedical sciences due to their excellent biocompatibility and tunable, versatile functionality. However, the relatively poor accumulation and retention of these nanomedicines in targeted tissues have often hindered their clinical translation. Herein, highly efficient, targeted delivery, and in situ aggregation of ferrocene (Fc)-capped Au nanoparticles (NPs) are reported to cucurbit[7]uril (CB[7])-capped Fe3 O4 NPs (as an artificial target) that are magnetically deposited into the tumor, driven by strong, multipoint CB[7]-Fc host-guest interactions (here defined as "supramolecular tropism" for the first time), leading to high tumor accumulation and retention of these NPs. The in vitro and in vivo studies demonstrate the precisely controlled, specific accumulation, and retention of Au NPs in the tumor cells and tissue via supramolecular tropism and in situ aggregation, which afford locally enhanced CT imaging of cancer and enable tumor-specific photothermal therapy attributed to the plasmonic coupling effects between adjacent Au NPs within the supramolecular aggregations. This work provides a novel concept of supramolecular tropism, which may drive targeted delivery and enable specific accumulation, retention, and activation of nanomedicine for improved bioimaging and therapy of cancer.


Asunto(s)
Nanopartículas del Metal , Nanopartículas , Neoplasias , Oro , Humanos , Neoplasias/diagnóstico por imagen , Neoplasias/terapia , Terapia Fototérmica , Tropismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA