Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-35839627

RESUMEN

BMS-986205 (Linrodostat) is a small molecule inhibitor of Indoleamine 2, 3 dioxygenase (IDO) that is currently being evaluated in clinical trials for the oral treatment of advanced cancer. Initially, there were concerns regarding possible toxicity following administration, since BMS-986205 undergoes metabolism to form 4-chloroaniline. However, it was later determined that the downstream metabolites of 4-chloroaniline might be a greater concern. To evaluate the potential toxicity of these metabolites, a sensitive LC-MS/MS analytical method was needed to quantify both the parent compound and multiple metabolites. This presented a challenge since the method required the analysis of multiple analytes while still retaining the analytical sensitivity required to support studies. By utilizing a multi-function analytical method, we were able to quantify the necessary analytes using a complex LC-MS/MS-based method including the application of both negative and positive electrospray ionization.


Asunto(s)
Indolamina-Pirrol 2,3,-Dioxigenasa , Espectrometría de Masas en Tándem , Acetamidas , Cromatografía Liquida/métodos , Quinolinas , Reproducibilidad de los Resultados , Espectrometría de Masas en Tándem/métodos
2.
ACS Med Chem Lett ; 12(7): 1143-1150, 2021 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-34267885

RESUMEN

IDO1 inhibitors have shown promise as immunotherapies for the treatment of a variety of cancers, including metastatic melanoma and renal cell carcinoma. We recently reported the identification of several novel heme-displacing IDO1 inhibitors, including the clinical molecules linrodostat (BMS-986205) and BMS-986242. Both molecules contain quinolines that, while being present in successful medicines, are known to be potentially susceptible to oxidative metabolism. Efforts to swap this quinoline with an alternative aromatic system led to the discovery of 2,3-disubstituted pyridines as suitable replacements. Further optimization, which included lowering ClogP in combination with strategic fluorine incorporation, led to the discovery of compound 29, a potent, selective IDO1 inhibitor with robust pharmacodynamic activity in a mouse xenograft model.

3.
ACS Med Chem Lett ; 11(11): 2195-2203, 2020 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-33214829

RESUMEN

Bruton's tyrosine kinase (BTK) has been shown to play a key role in the pathogenesis of autoimmunity. Therefore, the inhibition of the kinase activity of BTK with a small molecule inhibitor could offer a breakthrough in the clinical treatment of many autoimmune diseases. This Letter describes the discovery of BMS-986143 through systematic structure-activity relationship (SAR) development. This compound benefits from defined chirality derived from two rotationally stable atropisomeric axes, providing a potent and selective single atropisomer with desirable efficacy and tolerability profiles.

4.
J Med Chem ; 59(19): 9173-9200, 2016 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-27583770

RESUMEN

Bruton's tyrosine kinase (BTK), a nonreceptor tyrosine kinase, is a member of the Tec family of kinases. BTK plays an essential role in B cell receptor (BCR)-mediated signaling as well as Fcγ receptor signaling in monocytes and Fcε receptor signaling in mast cells and basophils, all of which have been implicated in the pathophysiology of autoimmune disease. As a result, inhibition of BTK is anticipated to provide an effective strategy for the clinical treatment of autoimmune diseases such as lupus and rheumatoid arthritis. This article details the structure-activity relationships (SAR) leading to a novel series of highly potent and selective carbazole and tetrahydrocarbazole based, reversible inhibitors of BTK. Of particular interest is that two atropisomeric centers were rotationally locked to provide a single, stable atropisomer, resulting in enhanced potency and selectivity as well as a reduction in safety liabilities. With significantly enhanced potency and selectivity, excellent in vivo properties and efficacy, and a very desirable tolerability and safety profile, 14f (BMS-986142) was advanced into clinical studies.


Asunto(s)
Carbazoles/química , Carbazoles/farmacología , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Agammaglobulinemia Tirosina Quinasa , Animales , Carbazoles/farmacocinética , Cristalografía por Rayos X , Femenino , Humanos , Isomerismo , Macaca fascicularis , Ratones , Ratones Endogámicos BALB C , Modelos Moleculares , Inhibidores de Proteínas Quinasas/farmacocinética , Proteínas Tirosina Quinasas/metabolismo , Quinazolinas/química , Quinazolinas/farmacocinética , Quinazolinas/farmacología , Relación Estructura-Actividad
5.
Bioanalysis ; 8(4): 265-74, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26807991

RESUMEN

BACKGROUND: A target protein-based affinity extraction LC-MS/MS method was developed to enable plasma level determination following ultralow dosing (0.1-3 µg/kg) of an inhibitor of apoptosis proteins molecule. Methodology & results: Affinity extraction (AE) utilizing immobilized target protein BIR2/BIR3 was used to selectively capture the inhibitor of apoptosis proteins molecule from dog plasma and enable removal of background matrix components. Pretreatment of plasma samples using protein precipitation was found to provide an additional sensitivity gain. A LLOQ of 7.8 pM was achieved by combining protein precipitation with AE. The method was used to support an ultralow dose dog toxicity study. CONCLUSION: AE-LC-MS/MS, utilizing target protein, is a highly sensitive methodology for small molecule quantification with potential for broader applicability.


Asunto(s)
Análisis Químico de la Sangre/métodos , Fraccionamiento Químico/métodos , Cromatografía Liquida/métodos , Proteínas Inhibidoras de la Apoptosis/antagonistas & inhibidores , Isoquinolinas/análisis , Límite de Detección , Oligopéptidos/análisis , Bibliotecas de Moléculas Pequeñas/análisis , Espectrometría de Masas en Tándem/métodos , Animales , Perros , Femenino , Humanos , Proteínas Inmovilizadas/antagonistas & inhibidores , Proteínas Inmovilizadas/química , Proteínas Inhibidoras de la Apoptosis/química , Isoquinolinas/química , Isoquinolinas/farmacología , Masculino , Oligopéptidos/química , Oligopéptidos/farmacología , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología
6.
Bioorg Med Chem Lett ; 20(5): 1744-8, 2010 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-20153189
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA