Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Eur Phys J C Part Fields ; 79(11): 978, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31885491

RESUMEN

The GERmanium Detector Array (Gerda) is a low background experiment located at the Laboratori Nazionali del Gran Sasso in Italy, which searches for neutrinoless double-beta decay of 76 Ge into 76 Se+2e - . Gerda has been conceived in two phases. Phase II, which started in December 2015, features several novelties including 30 new 76Ge enriched detectors. These were manufactured according to the Broad Energy Germanium (BEGe) detector design that has a better background discrimination capability and energy resolution compared to formerly widely-used types. Prior to their installation, the new BEGe detectors were mounted in vacuum cryostats and characterized in detail in the Hades underground laboratory in Belgium. This paper describes the properties and the overall performance of these detectors during operation in vacuum. The characterization campaign provided not only direct input for Gerda Phase II data collection and analyses, but also allowed to study detector phenomena, detector correlations as well as to test the accuracy of pulse shape simulation codes.

2.
Science ; 365(6460): 1445-1448, 2019 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-31488705

RESUMEN

A discovery that neutrinos are Majorana fermions would have profound implications for particle physics and cosmology. The Majorana character of neutrinos would make possible the neutrinoless double-ß (0νßß) decay, a matter-creating process without the balancing emission of antimatter. The GERDA Collaboration searches for the 0νßß decay of 76Ge by operating bare germanium detectors in an active liquid argon shield. With a total exposure of 82.4 kg⋅year, we observe no signal and derive a lower half-life limit of T 1/2 > 0.9 × 1026 years (90% C.L.). Our T 1/2 sensitivity, assuming no signal, is 1.1 × 1026 years. Combining the latter with those from other 0νßß decay searches yields a sensitivity to the effective Majorana neutrino mass of 0.07 to 0.16 electron volts.

3.
Phys Rev Lett ; 120(13): 132503, 2018 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-29694176

RESUMEN

The GERDA experiment searches for the lepton-number-violating neutrinoless double-ß decay of ^{76}Ge (^{76}Ge→^{76}Se+2e^{-}) operating bare Ge diodes with an enriched ^{76}Ge fraction in liquid argon. The exposure for broad-energy germanium type (BEGe) detectors is increased threefold with respect to our previous data release. The BEGe detectors feature an excellent background suppression from the analysis of the time profile of the detector signals. In the analysis window a background level of 1.0_{-0.4}^{+0.6}×10^{-3} counts/(keV kg yr) has been achieved; if normalized to the energy resolution this is the lowest ever achieved in any 0νßß experiment. No signal is observed and a new 90% C.L. lower limit for the half-life of 8.0×10^{25} yr is placed when combining with our previous data. The expected median sensitivity assuming no signal is 5.8×10^{25} yr.

4.
Phys Rev Lett ; 111(12): 122503, 2013 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-24093254

RESUMEN

Neutrinoless double beta decay is a process that violates lepton number conservation. It is predicted to occur in extensions of the standard model of particle physics. This Letter reports the results from phase I of the Germanium Detector Array (GERDA) experiment at the Gran Sasso Laboratory (Italy) searching for neutrinoless double beta decay of the isotope (76)Ge. Data considered in the present analysis have been collected between November 2011 and May 2013 with a total exposure of 21.6 kg yr. A blind analysis is performed. The background index is about 1 × 10(-2) counts/(keV kg yr) after pulse shape discrimination. No signal is observed and a lower limit is derived for the half-life of neutrinoless double beta decay of (76)Ge, T(1/2)(0ν) >2.1 × 10(25) yr (90% C.L.). The combination with the results from the previous experiments with (76)Ge yields T(1/2)(0ν)>3.0 × 10(25) yr (90% C.L.).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA