Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.253
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Basic Res Cardiol ; 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38963562

RESUMEN

Understanding the mechanisms underlying vascular regeneration in the heart is crucial for developing novel therapeutic strategies for myocardial ischemia. This study investigates the contribution of bone marrow-derived cells to endothelial cell populations in the heart, and their role in cardiac function and coronary circulation following repetitive ischemia (RI). Chimeric rats were created by transplanting BM cells from GFP female rats into irradiated male recipients. After engraftment chimeras were subjected to RI for 17 days. Vascular growth was assessed from recovery of cardiac function and increases in myocardial blood flow during LAD occlusion. After sorting GFP+ BM cells from heart and bone of Control and RI rats, single-cell RNA sequencing was implemented to determine the fate of BM cells. Our in vivo RI model demonstrated an improvement in cardiac function and myocardial blood flow after 17 days of RI with increased capillary density in the rats subjected to RI compared to Controls. Single-cell RNA sequencing of bone marrow cells isolated from rats' hearts identified distinct endothelial cell (EC) subpopulations. These ECs exhibited heterogeneous gene expression profiles and were enriched for markers of capillary, artery, lymphatic, venous, and immune ECs. Furthermore, BM-derived ECs in the RI group showed an angiogenic profile, characterized by upregulated genes associated with blood vessel development and angiogenesis. This study elucidates the heterogeneity of bone marrow-derived endothelial cells in the heart and their response to repetitive ischemia, laying the groundwork for targeting specific subpopulations for therapeutic angiogenesis in myocardial ischemia.

2.
Helicobacter ; 29(4): e13079, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38984661

RESUMEN

BACKGROUND: Eradicating Helicobacter pylori infection by bismuth quadruple therapy (BQT) is effective. However, the effect of BQT and subsequent fecal microbiota transplant (FMT) on the gut microbiota is less known. MATERIALS AND METHODS: This prospective randomized controlled trial was conducted at a tertiary hospital in China from January 2019 to October 2020, with the primary endpoints the effect of BQT on the gut microbiota and the effect of FMT on the gut microbiota after bismuth quadruple therapy eradication therapy. A 14-day BQT with amoxicillin and clarithromycin was administered to H. pylori-positive subjects, and after eradication therapy, patients received a one-time FMT or placebo treatment. We then collected stool samples to assess the effects of 14-day BQT and FMT on the gut microbiota. 16 s rDNA and metagenomic sequencing were used to analyze the structure and function of intestinal flora. We also used Gastrointestinal Symptom Rating Scale (GSRS) to evaluate gastrointestinal symptom during treatment. RESULTS: A total of 30 patients were recruited and 15 were assigned to either FMT or placebo groups. After eradication therapy, alpha-diversity was decreased in both groups. At the phylum level, the abundance of Bacteroidetes and Firmicutes decreased, while Proteobacteria increased. At the genus level, the abundance of beneficial bacteria decreased, while pathogenic bacteria increased. Eradication therapy reduced some resistance genes abundance while increased the resistance genes abundance linked to Escherichia coli. While they all returned to baseline by Week 10. Besides, the difference was observed in Week 10 by the diarrhea score between two groups. Compared to Week 2, the GSRS total score and diarrhea score decreased in Week 3 only in FMT group. CONCLUSIONS: The balance of intestinal flora in patients can be considerably impacted by BQT in the short term, but it has reverted back to baseline by Week 10. FMT can alleviate gastrointestinal symptoms even if there was no evidence it promoted restoration of intestinal flora.


Asunto(s)
Antibacterianos , Bismuto , Trasplante de Microbiota Fecal , Microbioma Gastrointestinal , Infecciones por Helicobacter , Helicobacter pylori , Humanos , Infecciones por Helicobacter/terapia , Infecciones por Helicobacter/microbiología , Infecciones por Helicobacter/tratamiento farmacológico , Microbioma Gastrointestinal/efectos de los fármacos , Trasplante de Microbiota Fecal/métodos , Masculino , Femenino , Persona de Mediana Edad , Helicobacter pylori/efectos de los fármacos , Adulto , Antibacterianos/uso terapéutico , Estudios Prospectivos , Bismuto/uso terapéutico , Quimioterapia Combinada , China , Amoxicilina/uso terapéutico , Claritromicina/uso terapéutico , Resultado del Tratamiento , Anciano , Heces/microbiología
3.
World J Clin Cases ; 12(19): 3800-3806, 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38994310

RESUMEN

BACKGROUND: Hypocalcemia is highly common in hospitalized patients, especially in those with trauma, On the other hand, abnormal calcium metabolism is an important metabolic challenge; however, it is often neglected and untreated, and certain factors may induce serious neurological and cardiovascular complications. AIM: To retrospectively analyze the impact of hypocalcemia on the prognosis of patients with multiple traumas. METHODS: The study was conducted from January 2020 to December 2021. Ninety-nine patients with multiple injuries were treated at the critical care medicine department of Fuyang People's Hospital. The selected indicators included sex, age, and blood calcium and hematocrit levels. Many indicators were observed, including within 24 h of hospitalization, and the prognosis was collected after 28 d. Based on the blood calcium levels, the patients were divided into the following two groups: Normocalcemia and hypocalcemia. Of the 99 patients included, 81 had normocalcemia, and 18 had hypocalcemia. Separate experiments were conducted for these two groups. RESULTS: There was an association between serum calcium levels and the prognosis of patients with polytrauma. CONCLUSION: Clinically, the prognosis of patients with multiple traumas can be preliminarily evaluated based on serum calcium levels.

4.
Int J Med Sci ; 21(9): 1738-1755, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39006851

RESUMEN

Background and Objectives: Irritable Bowel Syndrome (IBS) is a common gastrointestinal disorder often exacerbated by stress, influencing the brain-gut axis (BGA). BGA dysregulation, disrupted intestinal barrier function, altered visceral sensitivity and immune imbalance defects underlying IBS pathogenesis have been emphasized in recent investigations. Phosphoproteomics reveals unique phosphorylation details resulting from environmental stress. Here, we employ phosphoproteomics to explore the molecular mechanisms underlying IBS-like symptoms, mainly focusing on the role of ZO-1 and IL-1RAP phosphorylation. Materials and Methods: Morris water maze (MWM) was used to evaluate memory function for single prolonged stress (SPS). To assess visceral hypersensitivity of IBS-like symptoms, use the Abdominal withdrawal reflex (AWR). Colonic bead expulsion and defecation were used to determine fecal characteristics of the IBS-like symptoms. Then, we applied a phosphoproteomic approach to BGA research to discover the molecular mechanisms underlying the process of visceral hypersensitivity in IBS-like mice following SPS. ZO-1, p-S179-ZO1, IL-1RAP, p-S566-IL-1RAP and GFAP levels in BGA were measured by western blotting, immunofluorescence staining, and enzyme-linked immunosorbent assay to validate phosphorylation quantification. Fluorescein isothiocyanate-dextran 4000 and electron-microscopy were performed to observe the structure and function of the intestinal epithelial barrier. Results: The SPS group showed changes in learning and memory ability. SPS exposure affects visceral hypersensitivity, increased fecal water content, and significant diarrheal symptoms. Phosphoproteomic analysis displayed that p-S179-ZO1 and p-S566-IL-1RAP were significantly differentially expressed following SPS. In addition, p-S179-ZO1 was reduced in mice's DRG, colon, small intestine, spinal and hippocampus and intestinal epithelial permeability was increased. GFAP, IL-1ß and p-S566-IL-1RAP were also increased at the same levels in the BGA. And IL-1ß showed no significant difference was observed in serum. Our findings reveal substantial alterations in ZO-1 and IL-1RAP phosphorylation, correlating with increased epithelial permeability and immune imbalance. Conclusions: Overall, decreased p-S179-ZO1 and increased p-S566-IL-1RAP on the BGA result in changes to tight junction structure, compromising the structure and function of the intestinal epithelial barrier and exacerbating immune imbalance in IBS-like stressed mice.


Asunto(s)
Eje Cerebro-Intestino , Modelos Animales de Enfermedad , Síndrome del Colon Irritable , Proteína de la Zonula Occludens-1 , Animales , Síndrome del Colon Irritable/metabolismo , Síndrome del Colon Irritable/patología , Proteína de la Zonula Occludens-1/metabolismo , Ratones , Fosforilación , Masculino , Eje Cerebro-Intestino/fisiología , Estrés Psicológico/metabolismo , Estrés Psicológico/inmunología , Humanos , Ratones Endogámicos C57BL
5.
Asian J Androl ; 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38978290

RESUMEN

ABSTRACT: Compounds isolated from Epimedium include the total flavonoids of Epimedium, icariin, and its metabolites (icaritin, icariside I, and icariside II), which have similar molecular structures. Modern pharmacological research and clinical practice have proved that Epimedium and its active components have a wide range of pharmacological effects, especially in improving sexual function, hormone regulation, anti-osteoporosis, immune function regulation, anti-oxidation, and anti-tumor activity. To date, we still need a comprehensive source of knowledge about the pharmacological effects of Epimedium and its bioactive compounds on the male reproductive system. However, their actions in other tissues have been reviewed in recent years. This review critically focuses on the Epimedium, its bioactive compounds, and the biochemical and molecular mechanisms that modulate vital pathways associated with the male reproductive system. Such intrinsic knowledge will significantly further studies on the Epimedium and its bioactive compounds that protect the male reproductive system and provide some guidances for clinical treatment of related male reproductive disorders.

6.
Microbiol Spectr ; : e0005224, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38980030

RESUMEN

This study aims to explore the link between retinal vein occlusion (RVO), a blinding ocular condition, and alterations in gut microbiota composition, to offer insights into the pathogenesis of RVO. Fecal samples from 25 RVO patients and 11 non-RVO individuals were analyzed using 16S rRNA sequencing and liquid chromatography-mass spectrometry (LC-MS). Significant differences in the abundance of gut microbial species were noted between RVO and non-RVO groups. At the phylum level, the RVO group showed an elevation in the ratio of Firmicutes to Bacteroidetes. At the genus level, the RVO group showed higher abundance in Escherichia_Shigella (P < 0.05) and less abundance in Parabacteroides (P < 0.01) than the non-RVO group. Functional predictions indicated reduced folate synthesis, biotin metabolism, and oxidative phosphorylation, with an increase in butyric acid metabolism in the RVO group. LC-MS analysis showed significant differences in purine metabolism, ABC transporters, and naphthalene degradation pathways, especially purine metabolism. Pearson correlation analysis revealed significant associations between bacterial genera and fecal metabolites. Enrichment analysis highlighted connections between specific metabolites and bacterial genera. The findings showed that the dysregulation of gut microbiota was observed in RVO patients, suggesting the gut microbiota as a potential therapeutic target. Modulating the gut microbiota could be a novel strategy for managing RVO and improving patient outcomes. Furthermore, the study findings suggest the involvement of gut microbial dysbiosis in RVO development, underscoring the significance of understanding its pathogenesis for effective treatment development. IMPORTANCE: Retinal vein occlusion (RVO) is a blinding ocular condition, and understanding its pathogenesis is crucial for developing effective treatments. This study demonstrates significant differences in gut microbiota composition between RVO patients and non-RVO individuals, implicating the involvement of gut microbial dysbiosis in RVO development. Functional predictions and metabolic profiling provide insights into the underlying mechanisms, highlighting potential pathways for therapeutic intervention. These findings suggest that modulating the gut microbiota might be a promising strategy for managing RVO and improving patient outcomes.

7.
J Colloid Interface Sci ; 675: 379-390, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38972125

RESUMEN

Nowadays, the inherent re-stacking nature and weak d-p hybridization orbital interactions within MXene remains significant challenges in the field of electrocatalytic water splitting, leading to unsatisfactory electrocatalytic activity and cycling stability. Herein, this work aims to address these challenges and improve electrocatalytic performance by utilizing cobalt nanoparticles intercalation coupled with enhanced π-donation effect. Specifically, cobalt nanoparticles are integrated into V2C MXene nanosheets to mitigate the re-stacking issue. Meanwhile, a notable charge redistribution from cobalt to vanadium elevates orbital levels, reduces π*-antibonding orbital occupancy and alleviates Jahn-Teller distortion. Doping with tellurium induces localized electric field rearrangement resulting from the changes in electron cloud density. As a result, Co-V2C MXene-Te acquires desirable activity for hydrogen evolution reaction and oxygen evolution reaction with the overpotential of 80.8 mV and 287.7 mV, respectively, at the current density of -10 mA cm-2 and 10 mA cm-2. The overall water splitting device achieves an impressive low cell voltage requirement of 1.51 V to obtain 10 mA cm-2. Overall, this work could offer a promising solution when facing the re-stacking issue and weak d-p hybridization orbital interactions of MXene, furnishing a high-performance electrocatalyst with favorable electrocatalytic activity and cycling stability.

8.
Clin Transl Oncol ; 2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38907827

RESUMEN

OBJECTIVE: The primary objective of this study is to explore the significance of concurrent evaluation of HER2 gene amplification and p53 and Ki67 expression in gastric cancer tissues. METHODS: Fluorescence in situ hybridization (FISH) and immunohistochemistry (IHC) methodologies were used to detect HER2 gene amplification, as well as the expression levels of HER2, p53, and Ki67 proteins, across a group of 78 gastric cancer cases. RESULTS: The expression rate of the HER2 protein was determined to be 43.6% (34/78), with 17.9% (14/78) categorized as HER2 protein 3 + , 14.1% (11/78) as HER2 protein 2 + , and 11.5% (9/78) as HER2 protein 1 + . Using FISH technology, the HER2 gene amplification rate was identified as 19.2% (15/78), including 3 cases of HER2 gene cluster amplification, 5 cases of large granular amplification, 4 cases of punctate amplification, and 3 cases of high polysomy. The positive rate of p53 in gastric cancer cells was 52.6% (41/78), with 62.8% (49/78) of patients exhibiting a ki67 proliferation index ≤ 30, and 37.2% (29/78) accounting for a ki67 proliferation index > 30. The expression rates of the HER2 gene, p53, and ki67 in gastric cancer tissues were significantly associated with both gastric cancer staging and lymph node metastasis (P < 0.05). CONCLUSION: The HER2 gene amplification rate and gene copy number exhibit a positive correlation with the expression rates of p53 and ki67. Combining these assessments can provide crucial insights into the assessment of metastatic potential, disease progression, and prognosis of gastric tumor cells. This holds paramount importance in steering the formulation of individualized treatment strategies.

9.
Genome Biol ; 25(1): 148, 2024 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-38845023

RESUMEN

BACKGROUND: Sheep and goats have undergone domestication and improvement to produce similar phenotypes, which have been greatly impacted by structural variants (SVs). Here, we report a high-quality chromosome-level reference genome of Asiatic mouflon, and implement a comprehensive analysis of SVs in 897 genomes of worldwide wild and domestic populations of sheep and goats to reveal genetic signatures underlying convergent evolution. RESULTS: We characterize the SV landscapes in terms of genetic diversity, chromosomal distribution and their links with genes, QTLs and transposable elements, and examine their impacts on regulatory elements. We identify several novel SVs and annotate corresponding genes (e.g., BMPR1B, BMPR2, RALYL, COL21A1, and LRP1B) associated with important production traits such as fertility, meat and milk production, and wool/hair fineness. We detect signatures of selection involving the parallel evolution of orthologous SV-associated genes during domestication, local environmental adaptation, and improvement. In particular, we find that fecundity traits experienced convergent selection targeting the gene BMPR1B, with the DEL00067921 deletion explaining ~10.4% of the phenotypic variation observed in goats. CONCLUSIONS: Our results provide new insights into the convergent evolution of SVs and serve as a rich resource for the future improvement of sheep, goats, and related livestock.


Asunto(s)
Cabras , Animales , Cabras/genética , Ovinos/genética , Evolución Molecular , Variación Estructural del Genoma , Sitios de Carácter Cuantitativo , Genoma , Variación Genética , Domesticación , Fenotipo , Selección Genética , Receptores de Proteínas Morfogenéticas Óseas de Tipo 1/genética
10.
Org Lett ; 26(23): 4857-4862, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38838191

RESUMEN

The efficient construction of π-conjugated polycyclic heteroarenes represents a significant task in the field of functional materials. A one-step oxidative tandem cyclization of aromatic acids with (benzo)thiophenes was developed to access planar sulfur-containing polycyclic heteroarenes. This protocol undergoes intermolecular cross-dehydrogenative coupling followed by intramolecular Friedel-Crafts acylation and provides a facile pathway to planar polycyclic compounds from inexpensive reactants. The synthesized heteroarenes serving as lipid-droplet-targeted probes exhibit outstanding performance with favorable biocompatibility and photostability.

11.
PLoS One ; 19(6): e0304625, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38870152

RESUMEN

The rapid evolution of the digital economy has significantly accelerated progress towards achieving green and sustainable processes, particularly in the field of green production. While existing research has delved into the effects of the digital economy on Green Innovation (GI) and the consequences of digital transformation on Corporate Value (CV), there remains a notable gap in the literature regarding the potential for synergistic enhancements in firms' GI&CV through the ongoing digital revolution. This study utilizes an evolutionary game model and employs system dynamics methods to simulate the dynamic evolution trajectory of the influence of the digital economy on the synergy between GI&CV. Subsequently, it empirically assesses the interconnected synergies between GI&CV using a dataset comprising information from Chinese listed firms spanning from 2011 to 2020, examining the impact of the digital economy on these synergies. Moreover, the study delves into the analysis of the transmission mechanism and conducts an extended investigation to further explore this phenomenon. The findings of this paper including: (1) The digital economy acts as a driving force behind the synergistic enhancement of firm GI&CV. Moreover, this effect is further augmented by governmental environmental regulation and green subsidy policies. (2) Drawing upon the information asymmetry theory and the resource-based theory, the regional marketization level and firms' digital transformation play intermediary roles. (3) The heterogeneity test indicate that firms situated in eastern regions and those classified as non-heavily polluted benefitted to a greater extent. This study sheds light on the incentive implications of digital economy for the synergistic upgrading of GI&CV, thereby extending the breadth of study on the consequences of digital economy. Moreover, it offers actionable suggestions for enterprises to leverage digital economy development towards achieving a synergistic improvement of GI&CV.


Asunto(s)
Invenciones , China , Invenciones/economía , Humanos , Desarrollo Económico , Conservación de los Recursos Naturales/economía , Conservación de los Recursos Naturales/métodos , Comercio/economía
12.
Clin Transl Oncol ; 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38758385

RESUMEN

OBJECTIVE: The objective of this study is to assess the clinical pathological attributes of Hepatoid Adenocarcinoma of the Stomach (HAS) and to delineate the differential diagnostic considerations about it. METHOD: The investigation involved analyzing 31 HAS cases using histomorphological assessment, immunohistochemical profiling, and relevant gene detection methodologies. RESULTS: Among the 31 HAS cases, 9 (29.0%) were of trabecular hepatoid adenocarcinoma of the stomach, 7 (22.6%) were of glandular hepatoid adenocarcinoma of the stomach, 4 (12.9%) were of nesting hepatoid adenocarcinoma of the stomach, 3 (9.7%) were of clear cell hepatoid adenocarcinoma of the stomach, and 8 (25.8%) were of diverse hepatoid adenocarcinoma of the stomach. Of these 31 cases, 24 were male, accounting for 77.4% of the cases. Serum alpha-fetoprotein (AFP) levels were notably elevated, with radioimmunoassay results reaching 1240 ng/ml; 28 out of 31 cases had AFP levels below 25 µg/l, accounting for 90.3%. Related genes: HER2 protein indicated positive expression on the cell membrane in 35.5% (11/31) of the cases; HER2 gene amplification detected by the FISH technique was 12.9% (4/31). Tumoral stromal lymphocytes exhibited a PD-1 positive expression rate of 58.1% (18/31). In gastric cancer tissues, the PD-L1 positive rate was 45.1% (14/31). CONCLUSION: HAS represents a distinctive subtype of gastric cancer with a propensity for mimicking other forms of tumors, underscoring the significance of discerning its unique histopathological attributes for accurate differential diagnosis and tailored therapeutic interventions.

13.
Metab Eng ; 83: 206-215, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38710300

RESUMEN

Shewanella oneidensis MR-1 has found widespread applications in pollutant transformation and bioenergy production, closely tied to its outstanding heme synthesis capabilities. However, this significant biosynthetic potential is still unexploited so far. Here, we turned this bacterium into a highly-efficient bio-factory for green synthesis of 5-Aminolevulinic Acid (5-ALA), an important chemical for broad applications in agriculture, medicine, and the food industries. The native C5 pathway genes of S. oneidensis was employed, together with the introduction of foreign anti-oxidation module, to establish the 5-ALA production module, resulting 87-fold higher 5-ALA yield and drastically enhanced tolerance than the wild type. Furthermore, the metabolic flux was regulated by using CRISPR interference and base editing techniques to suppress the competitive pathways to further improve the 5-ALA titer. The engineered strain exhibited 123-fold higher 5-ALA production capability than the wild type. This study not only provides an appealing new route for 5-ALA biosynthesis, but also presents a multi-dimensional modularized engineering strategy to broaden the application scope of S. oneidensis.


Asunto(s)
Ácido Aminolevulínico , Ingeniería Metabólica , Shewanella , Shewanella/genética , Shewanella/metabolismo , Ácido Aminolevulínico/metabolismo
14.
J Pers Med ; 14(5)2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38793058

RESUMEN

The massive amount of human biological, imaging, and clinical data produced by multiple and diverse sources necessitates integrative modeling approaches able to summarize all this information into answers to specific clinical questions. In this paper, we present a hypermodeling scheme able to combine models of diverse cancer aspects regardless of their underlying method or scale. Describing tissue-scale cancer cell proliferation, biomechanical tumor growth, nutrient transport, genomic-scale aberrant cancer cell metabolism, and cell-signaling pathways that regulate the cellular response to therapy, the hypermodel integrates mutation, miRNA expression, imaging, and clinical data. The constituting hypomodels, as well as their orchestration and links, are described. Two specific cancer types, Wilms tumor (nephroblastoma) and non-small cell lung cancer, are addressed as proof-of-concept study cases. Personalized simulations of the actual anatomy of a patient have been conducted. The hypermodel has also been applied to predict tumor control after radiotherapy and the relationship between tumor proliferative activity and response to neoadjuvant chemotherapy. Our innovative hypermodel holds promise as a digital twin-based clinical decision support system and as the core of future in silico trial platforms, although additional retrospective adaptation and validation are necessary.

15.
J Nanobiotechnology ; 22(1): 298, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38811968

RESUMEN

BACKGROUND: Advanced hepatocellular carcinoma (HCC) can be treated with sorafenib, which is the primary choice for targeted therapy. Nevertheless, the effectiveness of sorafenib is greatly restricted due to resistance. Research has shown that exosomes and circular RNAs play a vital role in the cancer's malignant advancement. However, the significance of exosomal circular RNAs in the development of resistance to sorafenib in HCC remains uncertain. METHODS: Ultracentrifugation was utilized to isolate exosomes (Exo-SR) from the sorafenib-resistant HCC cells' culture medium. Transcriptome sequencing and differential expression gene analysis were used to identify the targets of Exo-SR action in HCC cells. To identify the targets of Exo-SR action in HCC cells, transcriptome sequencing and analysis of differential expression genes were employed. To evaluate the impact of exosomal circUPF2 on resistance to sorafenib in HCC, experiments involving gain-of-function and loss-of-function were conducted. RNA pull-down assays and mass spectrometry analysis were performed to identify the RNA-binding proteins interacting with circUPF2. RNA immunoprecipitation (RIP), RNA pull-down, electrophoretic mobility shift assay (EMSA), immunofluorescence (IF) -fluorescence in situ hybridization (FISH), and rescue assays were used to validate the interactions among circUPF2, IGF2BP2 and SLC7A11. Finally, a tumor xenograft assay was used to examine the biological functions and underlying mechanisms of Exo-SR and circUPF2 in vivo. RESULTS: A novel exosomal circRNA, circUPF2, was identified and revealed to be significantly enriched in Exo-SR. Exosomes with enriched circUPF2 enhanced sorafenib resistance by promoting SLC7A11 expression and suppressing ferroptosis in HCC cells. Mechanistically, circUPF2 acts as a framework to enhance the creation of the circUPF2-IGF2BP2-SLC7A11 ternary complex contributing to the stabilization of SLC7A11 mRNA. Consequently, exosomal circUPF2 promotes SLC7A11 expression and enhances the function of system Xc- in HCC cells, leading to decreased sensitivity to ferroptosis and resistance to sorafenib. CONCLUSIONS: The resistance to sorafenib in HCC is facilitated by the exosomal circUPF2, which promotes the formation of the circUPF2-IGF2BP2-SLC7A11 ternary complex and increases the stability of SLC7A11 mRNA. Focusing on exosomal circUPF2 could potentially be an innovative approach for HCC treatment.


Asunto(s)
Carcinoma Hepatocelular , Resistencia a Antineoplásicos , Exosomas , Ferroptosis , Neoplasias Hepáticas , ARN Circular , Proteínas de Unión al ARN , Sorafenib , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Humanos , Exosomas/metabolismo , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/metabolismo , Sorafenib/farmacología , ARN Circular/genética , ARN Circular/metabolismo , Ferroptosis/efectos de los fármacos , Línea Celular Tumoral , Animales , Ratones , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Ratones Desnudos , Sistema de Transporte de Aminoácidos y+/metabolismo , Sistema de Transporte de Aminoácidos y+/genética , Antineoplásicos/farmacología , Regulación Neoplásica de la Expresión Génica , Ratones Endogámicos BALB C
16.
Int J Biol Macromol ; 271(Pt 1): 132693, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38806086

RESUMEN

In this study, a novel double-layer slow-release fertilizer (SRF) was developed utilizing stearic acid (SA) as a hydrophobic inner coating and a blend of starch phosphate carbamate (abbreviated as SPC) and polyvinyl alcohol (PVA) as a hydrophilic outer coating (designated as SPCP). The mass ratios of SPC and PVA in the SPCP matrices were systematically optimized by comprehensively checking the water absorbency, water contact angle (WCA), water retention property (WR), and mechanical properties such as percentage elongation at break and tensile strength with FTIR, XRD, EDS, and XPS techniques, etc. Moreover, the optimal SPCP/5:5 demonstrated superior water absorbency with an 80.2 % increase for the total mass compared to natural starch/PVA(NSP), along with desirable water retention capacity in the soil, exhibiting a weight loss of only 48 % over 13 d. Relative to pure urea and SA/NSPU/5:5, SA/SPCPU/5:5 released 50.3 % of its nutrient within 15 h, leading to nearly complete release over 25 h in the aqueous phase, while only 46.6 % of urea was released within 20 d in soil, extending to approximately 30 d. The slow release performance of urea reveals that the diffusion rate of urea release shows a significant decrease with an increase in coating layers. Consequently, this work demonstrated a prospective technology for the exploration of environmentally friendly SRF by integrating biodegradable starch derivatives with other polymers.


Asunto(s)
Preparaciones de Acción Retardada , Fertilizantes , Alcohol Polivinílico , Almidón , Urea , Agua , Almidón/química , Alcohol Polivinílico/química , Urea/química , Agua/química , Biodegradación Ambiental , Interacciones Hidrofóbicas e Hidrofílicas , Suelo/química
17.
Dalton Trans ; 53(24): 10142-10149, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38818546

RESUMEN

The development of excellent bifunctional electrocatalysts is an effective way to promote the industrial application of electrolytic water. In this work, a free-standing W-doped cobalt selenide (W-CoSe300/NF) electrocatalyst with a snowflake-like structure supported on nickel foam was prepared by a hydrothermal-selenization strategy. Benefiting from the high specific surface area of the 3D snowflake-like structure and the regulation of tungsten doping on the electronic structure of the metal active center, W-CoSe300/NF shows remarkable electrocatalytic water decomposition performance. In 1.0 M KOH, the W-CoSe300/NF electrocatalyst achieved an efficient HER and OER at a current density of 50 mA cm-2 with overpotentials as low as 84 mV and 283 mV, respectively. More importantly, W-CoSe300/NF acts as both the anode and cathode of the electrolytic tank, requiring only a potential of 1.54 V to obtain 10 mA cm-2 and can operate continuously for more than 120 hours at this current density. This study proposes a new way for the design of high efficiency and affordable bifunctional electrocatalysts.

18.
Environ Sci Technol ; 58(22): 9636-9645, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38770702

RESUMEN

Dissemination of antibiotic resistance genes (ARGs) in urban water bodies has become a significant environmental and health concern. Many approaches based on real-time quantitative PCR (qPCR) have been developed to offer rapid and highly specific detection of ARGs in water environments, but the complicated and time-consuming procedures have hindered their widespread use. Herein, we developed a facile one-step approach for rapid detection of ARGs by leveraging the trans-cleavage activity of Cas12a and recombinase polymerase amplification (RPA). This efficient method matches the sensitivity and specificity of qPCR and requires no complex equipment. The results show a strong correlation between the prevalence of four ARG markers (ARGs: sul1, qnrA-1, mcr-1, and class 1 integrons: intl1) in tap water, human urine, farm wastewater, hospital wastewater, municipal wastewater treatment plants (WWTPs), and proximate natural aquatic ecosystems, indicating the circulation of ARGs within the urban water cycle. Through monitoring the ARG markers in 18 WWTPs in 9 cities across China during both peak and declining stages of the COVID epidemic, we found an increased detection frequency of mcr-1 and qnrA-1 in wastewater during peak periods. The ARG detection method developed in this work may offer a useful tool for promoting a sustainable urban water cycle.


Asunto(s)
Farmacorresistencia Microbiana , Farmacorresistencia Microbiana/genética , Aguas Residuales , Humanos , Monitoreo del Ambiente/métodos , Ciudades , China , COVID-19
19.
ACS Synth Biol ; 13(6): 1941-1951, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38780992

RESUMEN

Electroactive bacteria, exemplified by Shewanella oneidensis MR-1, have garnered significant attention due to their unique extracellular electron-transfer (EET) capabilities, which are crucial for energy recovery and pollutant conversion. However, the practical application of MR-1 is constrained by its EET efficiency, a key limiting factor, due to the complexity of research methodologies and the challenges associated with the practical use of gene editing tools. To address this challenge, a novel gene integration system, INTEGRATE, was developed, utilizing CRISPR-mediated transposase technologies for precise genomic insertion within the S. oneidensis MR-1 genome. This system facilitated the insertion of extensive gene segments at different sites of the Shewanella genome with an efficiency approaching 100%. The inserted cargo genes could be kept stable on the genome after continuous cultivation. The enhancement of the organism's EET efficiency was realized through two primary strategies: the integration of the phenazine-1-carboxylic acid synthesis gene cluster to augment EET efficiency and the targeted disruption of the SO3350 gene to promote anodic biofilm development. Collectively, our findings highlight the potential of utilizing the INTEGRATE system for strategic genomic alterations, presenting a synergistic approach to augment the functionality of electroactive bacteria within bioelectrochemical systems.


Asunto(s)
Sistemas CRISPR-Cas , Shewanella , Transposasas , Shewanella/genética , Shewanella/metabolismo , Transporte de Electrón , Transposasas/genética , Transposasas/metabolismo , Sistemas CRISPR-Cas/genética , Edición Génica/métodos , Genoma Bacteriano , Biopelículas , Fuentes de Energía Bioeléctrica/microbiología
20.
JCI Insight ; 9(12)2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38781017

RESUMEN

DC inhibitory receptor (DCIR) is a C-type lectin receptor selectively expressed on myeloid cells, including monocytes, macrophages, DCs, and neutrophils. Its role in immune regulation has been implicated in murine models and human genome-wide association studies, suggesting defective DCIR function associates with increased susceptibility to autoimmune diseases such as rheumatoid arthritis, lupus, and Sjögren's syndrome. However, little is known about the mechanisms underlying DCIR activation to dampen inflammation. Here, we developed anti-DCIR agonistic antibodies that promote phosphorylation on DCIR's immunoreceptor tyrosine-based inhibitory motifs and recruitment of SH2 containing protein tyrosine phosphatase-2 for reducing inflammation. We also explored the inflammation resolution by depleting DCIR+ cells with antibodies. Utilizing a human DCIR-knock-in mouse model, we validated the antiinflammatory properties of the agonistic anti-DCIR antibody in experimental peritonitis and colitis. These findings provide critical evidence for targeting DCIR to develop transformative therapies for inflammatory diseases.


Asunto(s)
Inflamación , Transducción de Señal , Animales , Ratones , Humanos , Transducción de Señal/inmunología , Inflamación/inmunología , Peritonitis/inmunología , Modelos Animales de Enfermedad , Colitis/inmunología , Fosforilación , Ratones Endogámicos C57BL
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA