Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Biol Macromol ; 280(Pt 4): 135608, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39276877

RESUMEN

X-ray Photodynamic Therapy (XPDT) is an emerging, deeply penetrating, and non-invasive tumor treatment that stimulates robust antitumor immune responses. However, its efficacy is often limited by low therapeutic delivery and immunosuppressant within the tumor microenvironment. This challenge can potentially be addressed by utilizing X-ray responsive iron-glycol chitosan-polypyrrole nanozymes (GCS-I-PPy NZs), which activate M1 macrophages. These nanozymes increase tumor infiltration and enhance the macrophages' intrinsic immune response and their ability to stimulate adaptive immunity. Authors have designed biocompatible, photosensitizer-containing GCS-I-PPy NZs using oxidation/reduction reactions. These nanozymes were internalized by M1 macrophages to form RAW-GCS-I-PPy NZs. Authors' results demonstrated that these engineered macrophages effectively delivered the nanozymes with potentially high tumor accumulation. Within the tumor microenvironment, the accumulated GCS-I-PPy NZs underwent X-ray irradiation, generating reactive oxygen species (ROS). This ROS augmentation significantly enhanced the therapeutic effect of XPDT and synergistically promoted T cell infiltration into the tumor. These findings suggest that nano-engineered M1 macrophages can effectively boost the immune effects of XPDT, providing a promising strategy for enhancing cancer immunotherapy. The ability of GCS-I-PPy NZs to mediate M1 macrophage activation and increase tumor infiltration highlights their potential in overcoming the limitations of current XPDT approaches and improving therapeutic outcomes in melanoma and other cancers.

2.
Nat Commun ; 15(1): 5680, 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38971819

RESUMEN

Obesity shapes anti-tumor immunity through lipid metabolism; however, the mechanisms underlying how colorectal cancer (CRC) cells utilize lipids to suppress anti-tumor immunity remain unclear. Here, we show that tumor cell-intrinsic ATP6V0A1 drives exogenous cholesterol-induced immunosuppression in CRC. ATP6V0A1 facilitates cholesterol absorption in CRC cells through RAB guanine nucleotide exchange factor 1 (RABGEF1)-dependent endosome maturation, leading to cholesterol accumulation within the endoplasmic reticulum and elevated production of 24-hydroxycholesterol (24-OHC). ATP6V0A1-induced 24-OHC upregulates TGF-ß1 by activating the liver X receptor (LXR) signaling. Subsequently, the release of TGF-ß1 into the tumor microenvironment by CRC cells activates the SMAD3 pathway in memory CD8+ T cells, ultimately suppressing their anti-tumor activities. Moreover, we identify daclatasvir, a clinically used anti-hepatitis C virus (HCV) drug, as an ATP6V0A1 inhibitor that can effectively enhance the memory CD8+ T cell activity and suppress tumor growth in CRC. These findings shed light on the potential for ATP6V0A1-targeted immunotherapy in CRC.


Asunto(s)
Linfocitos T CD8-positivos , Colesterol , Neoplasias Colorrectales , Transducción de Señal , Factor de Crecimiento Transformador beta1 , Neoplasias Colorrectales/inmunología , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Humanos , Animales , Colesterol/metabolismo , Ratones , Línea Celular Tumoral , Factor de Crecimiento Transformador beta1/metabolismo , Memoria Inmunológica , ATPasas de Translocación de Protón Vacuolares/metabolismo , Microambiente Tumoral/inmunología , Receptores X del Hígado/metabolismo , Hidroxicolesteroles/metabolismo , Hidroxicolesteroles/farmacología , Pirrolidinas/farmacología , Proteína smad3/metabolismo , Ratones Endogámicos C57BL , Carbamatos/farmacología
3.
Clin Kidney J ; 16(11): 1936-1946, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37915887

RESUMEN

Background: Chronic kidney disease (CKD) patients possess a higher risk for renal cell carcinoma (RCC) possibly because of related underlying inflammation and immune dysregulation. In the current population-based cohort study, we evaluate the effects of influenza vaccination on RCC among CKD patients. Methods: We analysed the vaccinated and unvaccinated CKD patients (≥55 years of age) identified from the Taiwan National Health Insurance Database. Propensity score matching was used to reduce the selection bias. Subgroup analyses based on comorbid conditions, dialysis status and vaccinated dosages were also conducted. Results: The incidence of RCC decreased significantly in the vaccinated compared with unvaccinated group {unadjusted hazard ratio [HR] 0.50 [95% confidence interval (CI) 0.31-0.81], P < .01; adjusted HR 0.46 [95% CI 0.28-0.75], P < .01}. Such protective effects of influenza vaccination were noted significantly among those ≥75 years of age [unadjusted HR 0.29 (95% CI 0.12-0.74), P < .01; adjusted HR 0.22 (95% CI 0.08-0.58), P < .01]. A reverse association was noted between the total number of vaccinations and RCC events in both unadjusted and adjusted models. The Kaplan-Meier estimates of the RCC events showed significantly higher free survival rates in the vaccinated as compared with the unvaccinated patients (logrank P = .005). Conclusion: This population-based cohort study found a significant inverse relationship between influenza vaccination and the risk of RCC in CKD patients and the protective effects were more prominent in patients >75 years of age. A possible relation exists between the total number of vaccinations and RCC events. Future randomized clinical and basic studies will be needed to prove these findings and underlying pathophysiological mechanisms.

4.
Urol J ; 19(6): 420-426, 2022 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-36029023

RESUMEN

PURPOSE: To evaluate the safety and the efficacy of a radiation-free 2-step tract dilation technique in totally ultrasound-guided percutaneous nephrolithotomy (PCNL). MATERIALS AND METHODS: From Oct 2018 to Mar 2020, we prospectively and consecutively enrolled 18 patients with 19 kidney units with urolithiasis. The nephrostomy tract was established by the following four steps: 1) ultrasound-guided renal puncture, 2) first-stage serial dilation to 16 Fr with Amplatz dilators, 3) check and adjustment of the partially dilated tract with a ureteroscope, 4) second-stage dilation with a 24-Fr balloon dilator. RESULTS: The median age was 62.0 [IQR 11.0] years, and 11 (61.1%) were male. The median stone size was 3.3 [3.6] cm2, and stone laterality was almost equal over both sides. Successful tract establishment on the first attempt without fluoroscopy was achieved in 18 (94.7%) operations. The median tract establishment time was 10.4 [4.9] mins, and the median operation time was 67.0 [52.2] mins. The median hemoglobin drop was 1.0 [1.1] g/dL, and none required blood transfusion. Three (15.8%) developed fever. Pleural injury occurred in two (10.5%) operations (both had supracostal puncture), and one required drainage with pigtail. Stone-free status was achieved in 15 (77.8%) operations at 3 months postoperatively. CONCLUSIONS: Herein we present a radiation-free 2-step tract dilation technique, which is characterized by ureteroscopic check of the partially dilated tract in between the first dilation with serial fascial dilators and the second dilation with balloon. Our data suggest that it is a safe and effective method.


Asunto(s)
Nefrolitotomía Percutánea , Humanos , Masculino , Persona de Mediana Edad , Femenino , Nefrolitotomía Percutánea/efectos adversos
5.
Front Oncol ; 10: 571521, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33680914

RESUMEN

The clinical significance of mutation in multiple pulmonary nodules is largely limited by single gene mutation-directed analysis and lack of validation of gene expression profiles. New analytic strategy is urgently needed for comprehensive understanding of genomic data in multiple pulmonary nodules. In this study, we performed whole exome sequencing in 16 multiple lung nodules and 5 adjacent normal tissues from 4 patients with multiple pulmonary nodules and decoded the mutation information from a perspective of cellular functions and signaling pathways. Mutated genes as well as mutation patterns shared in more than two lesions were identified and characterized. We found that the number of mutations or mutated genes and the extent of protein structural changes caused by different mutations is positively correlated with the degree of malignancy. Moreover, the mutated genes in the nodules are associated with the molecular functions or signaling pathways related to cell proliferation and survival. We showed a developing pattern of quantity (the number of mutations/mutated genes) and quality (the extent of protein structural changes) in multiple pulmonary nodules. The mutation and mutated genes in multiple pulmonary nodules are associated with cell proliferation and survival related signaling pathways. This study provides a new perspective for comprehension of genomic mutational data and might shed new light on deciphering molecular evolution of early stage lung adenocarcinoma.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA