RESUMEN
Background: Neurogenetic disorders caused by pathogenic variants in four genes encoding non-erythrocytic spectrins ( SPTAN1, SPTBN1, SPTBN2, SPTBN4) range from peripheral and central nervous system involvement to complex syndromic presentations. Heterozygous pathogenic variants in SPTAN1 are exemplary for this diversity with phenotypes spanning almost the entire spectrum. Methods: Through international collaboration we identified 14 families with genetically unsolved distal weakness and unreported heterozygous SPTAN1 loss-of-function variants including frameshift, nonsense and splice-acceptor variants. Clinical data, electrophysiology, muscle CT or MRI and muscle biopsy findings were collected and standardized. SPTAN1 protein, mRNA expression analysis and cDNA sequencing was performed on muscle tissue from two patients. Results: All 20 patients presented with early childhood onset distal weakness. The severity varied both within families and between different families. Foot abnormalities ranged from hammer toes and pes cavus to distal arthrogryposis. Electrophysiology showed mixed myogenic and neurogenic features. Muscle MRI or CT in 10 patients showed fatty infiltration of the distal lower limb anterior compartment and/or selective involvement of the extensor hallucis longus muscle. Muscle biopsy revealed myopathic changes with mild dystrophic and chronic neurogenic changes in 7 patients. Finally, we provide proof for nonsense mediated decay in tissues derived from two patients. Conclusions: We provide evidence for the association of SPTAN1 loss-of-function variants with childhood onset distal myopathy in 14 families. This finding extends the phenotypic spectrum of SPTAN1 loss-of-function variants ranging from intellectual disability to distal weakness with a predominant myogenic cause. KEY MESSAGES: SPTAN1 loss-of-function variants, including frameshift, nonsense and splice site variants cause a novel childhood onset distal weakness syndrome with primarily skeletal muscle involvement. Hereditary motor neuropathies and distal myopathic disorders present a well-known diagnostic challenge as they demonstrate substantial clinical and genetic overlap. The emergence of SPTAN1 loss-of-function variants serves as a noteworthy example, highlighting a growing convergence in the spectrum of genotypes linked to both hereditary motor neuropathies and distal myopathies.
RESUMEN
Biallelic pathogenic variants in the gene encoding nebulin (NEB) are a known cause of congenital myopathy. We present two brothers with congenital myopathy and compound heterozygous variants (NC_000002.12:g.151692086G>T; NM_001271208.2: c.2079C>A; p.(Cys693Ter) and NC_000002.12:g.151533439T>C; NM_001271208.2:c.21522+3A>G) in NEB. Transcriptomic sequencing on affected individual muscles revealed that the extended splice variant c.21522+3A>G causes exon 144 skipping. Nebulin isoforms containing exon 144 are known to be mutually exclusive with isoforms containing exon 143, and these isoforms are differentially expressed during development and in adult skeletal muscles. Affected individuals' MRI patterns of muscle involvement were compared with the known pattern of relative abundance of these two isoforms in muscle. We propose that the pattern of muscle involvement in these affected individuals better fits the distribution of exon 144-containing isoforms in muscle than with previously published MRI findings in NEB-related disease due to other variants. Our report introduces disease pathogenesis and manifestation as a result of alteration of isoform distributions in muscle.
RESUMEN
Importance: The 1-year results of the SECURE trial, a randomized trial comparing a restrictive strategy vs usual care for select patients with symptomatic cholelithiasis for cholecystectomy, resulted in a significantly lower operation rate after restrictive strategy. However, a restrictive strategy did not result in more pain-free patients at 1 year. Objective: To gauge pain level and determine the proportion of pain-free patients, operation rate, and biliary and surgical complications at the 5-year follow-up. Design, Setting, and Participants: This randomized clinical trial was a multicenter, parallel-arm, noninferiority, prospective study. Between February 2014 and April 2017, patients from 24 hospitals with symptomatic, uncomplicated cholelithiasis were included. Uncomplicated cholelithiasis was defined as gallstone disease without signs of complicated cholelithiasis, ie, biliary pancreatitis, cholangitis, common bile duct stones, or cholecystitis. Follow-up data for this analysis were collected by telephone from July 11, 2019, to September 23, 2023. Interventions: Patients were randomized (1:1) to receive usual care or a restrictive strategy with stepwise selection for cholecystectomy. Main Outcomes and Measures: The primary, noninferiority end point was proportion of patients who were pain free as evaluated by Izbicki pain score at the 5-year follow-up. A 5% noninferiority margin was chosen. The secondary end points included cholecystectomy rates, biliary and surgical complications, and patient satisfaction. Results: Among 1067 patients, the median (IQR) age was 49.0 years (38.0-59.0 years); 786 (73.7%) were female, and 281 (26.3%) were male. At the 5-year follow-up, 228 of 363 patients (62.8%) were pain free in the usual care group, compared with 216 of 353 patients (61.2%) in restrictive strategy group (difference, 1.6%; 1-sided 95% lower confidence limit, -7.6%; noninferiority P = .18). After cholecystectomy, 187 of 294 patients (63.6%) in the usual care group and 160 of 254 patients (63.0%) in the restrictive strategy group were pain free, respectively (P = .88). The restrictive care strategy was associated with 387 of 529 cholecystectomies (73.2%) compared with 437 of 536 in the usual care group (81.5%; 8.3% difference; P = .001). No differences between groups were observed in biliary and surgical complications or in patient satisfaction. Conclusions and Relevance: In the long-term, a restrictive strategy results in a significant but small reduction in operation rate compared with usual care and is not associated with increased biliary and surgical complications. However, regardless of the strategy, only two-third of patients were pain free. Further criteria for selecting patients with uncomplicated cholelithiasis for cholecystectomy and rethinking laparoscopic cholecystectomy as treatment is needed to improve patient-reported outcomes. Trial Registration: CCMO Identifier: NTR4022.
RESUMEN
Cytoplasmic and nuclear iron-sulfur (Fe-S) enzymes that are essential for genome maintenance and replication depend on the cytoplasmic Fe-S assembly (CIA) machinery for cluster acquisition. The core of the CIA machinery consists of a complex of CIAO1, MMS19 and FAM96B. The physiological consequences of loss of function in the components of the CIA pathway have thus far remained uncharacterized. Our study revealed that patients with biallelic loss of function in CIAO1 developed proximal and axial muscle weakness, fluctuating creatine kinase elevation, and respiratory insufficiency. In addition, they presented with CNS symptoms including learning difficulties and neurobehavioral comorbidities, along with iron deposition in deep brain nuclei, mild normocytic to macrocytic anemia, and gastrointestinal symptoms. Mutational analysis revealed reduced stability of the variants compared with WT CIAO1. Functional assays demonstrated failure of the variants identified in patients to recruit Fe-S recipient proteins, resulting in compromised activities of DNA helicases, polymerases, and repair enzymes that rely on the CIA complex to acquire their Fe-S cofactors. Lentivirus-mediated restoration of CIAO1 expression reversed all patient-derived cellular abnormalities. Our study identifies CIAO1 as a human disease gene and provides insights into the broader implications of the cytosolic Fe-S assembly pathway in human health and disease.
Asunto(s)
Proteínas Hierro-Azufre , Humanos , Proteínas Hierro-Azufre/genética , Proteínas Hierro-Azufre/metabolismo , Masculino , Femenino , Enfermedades Neuromusculares/genética , Enfermedades Neuromusculares/enzimología , Enfermedades Neuromusculares/metabolismo , Enfermedades Neuromusculares/patología , Niño , Núcleo Celular/metabolismo , Núcleo Celular/enzimología , Núcleo Celular/genética , Citoplasma/metabolismo , Citoplasma/enzimología , MetalochaperonasRESUMEN
Pathogenic variants in HMGCR were recently linked to a limb-girdle muscular dystrophy (LGMD) phenotype. The protein product HMG CoA reductase (HMGCR) catalyzes a key component of the cholesterol synthesis pathway. The two other muscle diseases associated with HMGCR, statin-associated myopathy (SAM) and autoimmune anti-HMGCR myopathy, are not inherited in a Mendelian pattern. The mechanism linking pathogenic variants in HMGCR with skeletal muscle dysfunction is unclear. We knocked down Hmgcr in mouse skeletal myoblasts, knocked down hmgcr in Drosophila, and expressed three pathogenic HMGCR variants (c.1327C>T, p.Arg443Trp; c.1522_1524delTCT, p.Ser508del; and c.1621G>A, p.Ala541Thr) in Hmgcr knockdown mouse myoblasts. Hmgcr deficiency was associated with decreased proliferation, increased apoptosis, and impaired myotube fusion. Transcriptome sequencing of Hmgcr knockdown versus control myoblasts revealed differential expression involving mitochondrial function, with corresponding differences in cellular oxygen consumption rates. Both ubiquitous and muscle-specific knockdown of hmgcr in Drosophila led to lethality. Overexpression of reference HMGCR cDNA rescued myotube fusion in knockdown cells, whereas overexpression of the pathogenic variants of HMGCR cDNA did not. These results suggest that the three HMGCR-related muscle diseases share disease mechanisms related to skeletal muscle development.
RESUMEN
Intracellular trafficking involves an intricate machinery of motor complexes including the dynein complex to shuttle cargo for autophagolysosomal degradation. Deficiency in dynein axonemal chains as well as cytoplasmic light and intermediate chains have been linked with ciliary dyskinesia and skeletal dysplasia. The cytoplasmic dynein 1 heavy chain protein (DYNC1H1) serves as a core complex for retrograde trafficking in neuronal axons. Dominant pathogenic variants in DYNC1H1 have been previously implicated in peripheral neuromuscular disorders (NMD) and neurodevelopmental disorders (NDD). As heavy-chain dynein is ubiquitously expressed, the apparent selectivity of heavy-chain dyneinopathy for motor neuronal phenotypes remains currently unaccounted for. Here, we aimed to evaluate the full DYNC1H1-related clinical, molecular and imaging spectrum, including multisystem features and novel phenotypes presenting throughout life. We identified 47 cases from 43 families with pathogenic heterozygous variants in DYNC1H1 (aged 0-59 years) and collected phenotypic data via a comprehensive standardized survey and clinical follow-up appointments. Most patients presented with divergent and previously unrecognized neurological and multisystem features, leading to significant delays in genetic testing and establishing the correct diagnosis. Neurological phenotypes include novel autonomic features, previously rarely described behavioral disorders, movement disorders, and periventricular lesions. Sensory neuropathy was identified in nine patients (median age of onset 10.6 years), of which five were only diagnosed after the second decade of life, and three had a progressive age-dependent sensory neuropathy. Novel multisystem features included primary immunodeficiency, bilateral sensorineural hearing loss, organ anomalies, and skeletal manifestations, resembling the phenotypic spectrum of other dyneinopathies. We also identified an age-dependent biphasic disease course with developmental regression in the first decade and, following a period of stability, neurodegenerative progression after the second decade of life. Of note, we observed several cases in whom neurodegeneration appeared to be prompted by intercurrent systemic infections with double-stranded DNA viruses (Herpesviridae) or single-stranded RNA viruses (Ross-River fever, SARS-CoV-2). Moreover, the disease course appeared to be exacerbated by viral infections regardless of age and/or severity of NDD manifestations, indicating a role of dynein in anti-viral immunity and neuronal health. In summary, our findings expand the clinical, imaging, and molecular spectrum of pathogenic DYNC1H1 variants beyond motor neuropathy disorders and suggest a life-long continuum and age-related progression due to deficient intracellular trafficking. This study will facilitate early diagnosis and improve counselling and health surveillance of affected patients.
RESUMEN
Background and Objectives: Omigapil is a small molecule which inhibits the GAPDH-Siah1-mediated apoptosis pathway. Apoptosis is a pathomechanism underlying the congenital muscular dystrophy subtypes LAMA2-related dystrophy (LAMA2-RD) and COL6-related dystrophy (COL6-RD). Studies of omigapil in the (dyw/dyw) LAMA2-RD mouse model demonstrated improved survival, and studies in the (dy2J/dy2J) LAMA2-RD mouse model and the (Col6a1-/-) COL6-RD mouse model demonstrated decreased apoptosis. Methods: A phase 1 open-label, sequential group, ascending oral dose, cohort study of omigapil in patients with LAMA2-RD or COL6-RD ages 5-16 years was performed (1) to establish the pharmacokinetic (PK) profile of omigapil at a range of doses, (2) to evaluate the safety and tolerability of omigapil at a range of doses, and (3) to establish the feasibility of conducting disease-relevant clinical assessments. Patients were enrolled in cohorts of size 4, with each patient receiving 4 weeks of vehicle run-in and 12 weeks of study drug (at daily doses ranging from 0.02 to 0.08 mg/kg). PK data from each cohort were analyzed before each subsequent dosing cohort was enrolled. A novel, adaptive dose-finding method (stochastic approximation with virtual observation recursion) was used to allow for dose escalation/reduction between cohorts based on PK data. Results: Twenty patients were enrolled at the NIH (LAMA2-RD: N = 10; COL6-RD: N = 10). Slightly greater than dose-proportional increases in systemic exposure to omigapil were seen at doses 0.02-0.08 mg/kg/d. The dose which achieved patient exposure within the pre-established target area under the plasma concentration-vs-time curve (AUC0-24h) range was 0.06 mg/kg/d. In general, omigapil was safe and well tolerated. No consistent changes were seen in the disease-relevant clinical assessments during the duration of the study. Discussion: This study represents the thus far only clinical trial of a therapeutic small molecule for LAMA2-RD and COL6-RD, completed with an adaptive trial design to arrive at dose adjustments. The trial met its primary end point and established that the PK profile of omigapil is suitable for further development in pediatric patients with LAMA2-RD or COL6-RD, the most common forms of congenital muscular dystrophy. While within the short duration of the study disease-relevant clinical assessments did not demonstrate significant changes, this study establishes the feasibility of performing interventional clinical trials in these rare disease patient populations. Classification of Evidence: This study provides Class IV evidence of omigapil in a dose-finding phase 1 study. Trial Registration Information: Clinical Trials NCT01805024.
RESUMEN
Biallelic pathogenic variants in the gene encoding nebulin (NEB) are a known cause of congenital myopathy. We present two individuals with congenital myopathy and compound heterozygous variants (NM_001271208.2: c.2079C>A; p.(Cys693Ter) and c.21522+3A>G ) in NEB. Transcriptomic sequencing on patient muscle revealed that the extended splice variant c.21522+3A>G causes exon 144 skipping. Nebulin isoforms containing exon 144 are known to be mutually exclusive with isoforms containing exon 143, and these isoforms are differentially expressed during development and in adult skeletal muscles. Patients MRIs were compared to the known pattern of relative abundance of these two isoforms in muscle. We propose that the pattern of muscle involvement in these patients better fits the distribution of exon 144-containing isoforms in muscle than with previously published MRI findings in NEB-related disease due to other variants. To our knowledge this is the first report hypothesizing disease pathogenesis through the alteration of isoform distributions in muscle.
RESUMEN
Copy number variants (CNVs) are significant contributors to the pathogenicity of rare genetic diseases and, with new innovative methods, can now reliably be identified from exome sequencing. Challenges still remain in accurate classification of CNV pathogenicity. CNV calling using GATK-gCNV was performed on exomes from a cohort of 6,633 families (15,759 individuals) with heterogeneous phenotypes and variable prior genetic testing collected at the Broad Institute Center for Mendelian Genomics of the Genomics Research to Elucidate the Genetics of Rare Diseases consortium and analyzed using the seqr platform. The addition of CNV detection to exome analysis identified causal CNVs for 171 families (2.6%). The estimated sizes of CNVs ranged from 293 bp to 80 Mb. The causal CNVs consisted of 140 deletions, 15 duplications, 3 suspected complex structural variants (SVs), 3 insertions, and 10 complex SVs, the latter two groups being identified by orthogonal confirmation methods. To classify CNV variant pathogenicity, we used the 2020 American College of Medical Genetics and Genomics/ClinGen CNV interpretation standards and developed additional criteria to evaluate allelic and functional data as well as variants on the X chromosome to further advance the framework. We interpreted 151 CNVs as likely pathogenic/pathogenic and 20 CNVs as high-interest variants of uncertain significance. Calling CNVs from existing exome data increases the diagnostic yield for individuals undiagnosed after standard testing approaches, providing a higher-resolution alternative to arrays at a fraction of the cost of genome sequencing. Our improvements to the classification approach advances the systematic framework to assess the pathogenicity of CNVs.
Asunto(s)
Variaciones en el Número de Copia de ADN , Secuenciación del Exoma , Exoma , Enfermedades Raras , Humanos , Variaciones en el Número de Copia de ADN/genética , Enfermedades Raras/genética , Enfermedades Raras/diagnóstico , Exoma/genética , Masculino , Femenino , Estudios de Cohortes , Pruebas Genéticas/métodosRESUMEN
Troponin I (TnI) regulates thin filament activation and muscle contraction. Two isoforms, TnI-fast (TNNI2) and TnI-slow (TNNI1), are predominantly expressed in fast- and slow-twitch myofibers, respectively. TNNI2 variants are a rare cause of arthrogryposis, whereas TNNI1 variants have not been conclusively established to cause skeletal myopathy. We identified recessive loss-of-function TNNI1 variants as well as dominant gain-of-function TNNI1 variants as a cause of muscle disease, each with distinct physiological consequences and disease mechanisms. We identified three families with biallelic TNNI1 variants (F1: p.R14H/c.190-9G>A, F2 and F3: homozygous p.R14C), resulting in loss of function, manifesting with early-onset progressive muscle weakness and rod formation on histology. We also identified two families with a dominantly acting heterozygous TNNI1 variant (F4: p.R174Q and F5: p.K176del), resulting in gain of function, manifesting with muscle cramping, myalgias, and rod formation in F5. In zebrafish, TnI proteins with either of the missense variants (p.R14H; p.R174Q) incorporated into thin filaments. Molecular dynamics simulations suggested that the loss-of-function p.R14H variant decouples TnI from TnC, which was supported by functional studies showing a reduced force response of sarcomeres to submaximal [Ca2+] in patient myofibers. This contractile deficit could be reversed by a slow skeletal muscle troponin activator. In contrast, patient myofibers with the gain-of-function p.R174Q variant showed an increased force to submaximal [Ca2+], which was reversed by the small-molecule drug mavacamten. Our findings demonstrated that TNNI1 variants can cause muscle disease with variant-specific pathomechanisms, manifesting as either a hypo- or a hypercontractile phenotype, suggesting rational therapeutic strategies for each mechanism.
Asunto(s)
Enfermedades Musculares , Sarcómeros , Animales , Humanos , Calcio/metabolismo , Contracción Muscular , Músculo Esquelético/metabolismo , Enfermedades Musculares/genética , Sarcómeros/metabolismo , Troponina I/genética , Troponina I/metabolismo , Pez Cebra/metabolismoRESUMEN
Collagen VI-related dystrophies (COL6-RDs) manifest with a spectrum of clinical phenotypes, ranging from Ullrich congenital muscular dystrophy (UCMD), presenting with prominent congenital symptoms and characterised by progressive muscle weakness, joint contractures and respiratory insufficiency, to Bethlem muscular dystrophy, with milder symptoms typically recognised later and at times resembling a limb girdle muscular dystrophy, and intermediate phenotypes falling between UCMD and Bethlem muscular dystrophy. Despite clinical and immunohistochemical features highly suggestive of COL6-RD, some patients had remained without an identified causative variant in COL6A1, COL6A2 or COL6A3. With combined muscle RNA-sequencing and whole-genome sequencing we uncovered a recurrent, de novo deep intronic variant in intron 11 of COL6A1 (c.930+189C>T) that leads to a dominantly acting in-frame pseudoexon insertion. We subsequently identified and have characterised an international cohort of forty-four patients with this COL6A1 intron 11 causative variant, one of the most common recurrent causative variants in the collagen VI genes. Patients manifest a consistently severe phenotype characterised by a paucity of early symptoms followed by an accelerated progression to a severe form of UCMD, except for one patient with somatic mosaicism for this COL6A1 intron 11 variant who manifests a milder phenotype consistent with Bethlem muscular dystrophy. Characterisation of this individual provides a robust validation for the development of our pseudoexon skipping therapy. We have previously shown that splice-modulating antisense oligomers applied in vitro effectively decreased the abundance of the mutant pseudoexon-containing COL6A1 transcripts to levels comparable to the in vivo scenario of the somatic mosaicism shown here, indicating that this therapeutic approach carries significant translational promise for ameliorating the severe form of UCMD caused by this common recurrent COL6A1 causative variant to a Bethlem muscular dystrophy phenotype.
RESUMEN
In digenic inheritance, pathogenic variants in two genes must be inherited together to cause disease. Only very few examples of digenic inheritance have been described in the neuromuscular disease field. Here we show that predicted deleterious variants in SRPK3, encoding the X-linked serine/argenine protein kinase 3, lead to a progressive early onset skeletal muscle myopathy only when in combination with heterozygous variants in the TTN gene. The co-occurrence of predicted deleterious SRPK3/TTN variants was not seen among 76,702 healthy male individuals, and statistical modeling strongly supported digenic inheritance as the best-fitting model. Furthermore, double-mutant zebrafish (srpk3-/-; ttn.1+/-) replicated the myopathic phenotype and showed myofibrillar disorganization. Transcriptome data suggest that the interaction of srpk3 and ttn.1 in zebrafish occurs at a post-transcriptional level. We propose that digenic inheritance of deleterious changes impacting both the protein kinase SRPK3 and the giant muscle protein titin causes a skeletal myopathy and might serve as a model for other genetic diseases.
Asunto(s)
Enfermedades Musculares , Pez Cebra , Animales , Humanos , Masculino , Conectina/genética , Conectina/metabolismo , Músculo Esquelético , Enfermedades Musculares/genética , Enfermedades Musculares/metabolismo , Enfermedades Musculares/patología , Mutación , Pez Cebra/genéticaRESUMEN
OBJECTIVE: ACTN2, encoding alpha-actinin-2, is essential for cardiac and skeletal muscle sarcomeric function. ACTN2 variants are a known cause of cardiomyopathy without skeletal muscle involvement. Recently, specific dominant monoallelic variants were reported as a rare cause of core myopathy of variable clinical onset, although the pathomechanism remains to be elucidated. The possibility of a recessively inherited ACTN2-myopathy has also been proposed in a single series. METHODS: We provide clinical, imaging, and histological characterization of a series of patients with a novel biallelic ACTN2 variant. RESULTS: We report seven patients from five families with a recurring biallelic variant in ACTN2: c.1516A>G (p.Arg506Gly), all manifesting with a consistent phenotype of asymmetric, progressive, proximal, and distal lower extremity predominant muscle weakness. None of the patients have cardiomyopathy or respiratory insufficiency. Notably, all patients report Palestinian ethnicity, suggesting a possible founder ACTN2 variant, which was confirmed through haplotype analysis in two families. Muscle biopsies reveal an underlying myopathic process with disruption of the intermyofibrillar architecture, Type I fiber predominance and atrophy. MRI of the lower extremities demonstrate a distinct pattern of asymmetric muscle involvement with selective involvement of the hamstrings and adductors in the thigh, and anterior tibial group and soleus in the lower leg. Using an in vitro splicing assay, we show that c.1516A>G ACTN2 does not impair normal splicing. INTERPRETATION: This series further establishes ACTN2 as a muscle disease gene, now also including variants with a recessive inheritance mode, and expands the clinical spectrum of actinopathies to adult-onset progressive muscle disease.
Asunto(s)
Cardiomiopatías , Enfermedades Musculares , Adulto , Humanos , Enfermedades Musculares/genética , Enfermedades Musculares/patología , Músculo Esquelético/diagnóstico por imagen , Músculo Esquelético/patología , Actinina/genética , FenotipoRESUMEN
SNURPORTIN-1, encoded by SNUPN, plays a central role in the nuclear import of spliceosomal small nuclear ribonucleoproteins. However, its physiological function remains unexplored. In this study, we investigate 18 children from 15 unrelated families who present with atypical muscular dystrophy and neurological defects. Nine hypomorphic SNUPN biallelic variants, predominantly clustered in the last coding exon, are ascertained to segregate with the disease. We demonstrate that mutant SPN1 failed to oligomerize leading to cytoplasmic aggregation in patients' primary fibroblasts and CRISPR/Cas9-mediated mutant cell lines. Additionally, mutant nuclei exhibit defective spliceosomal maturation and breakdown of Cajal bodies. Transcriptome analyses reveal splicing and mRNA expression dysregulation, particularly in sarcolemmal components, causing disruption of cytoskeletal organization in mutant cells and patient muscle tissues. Our findings establish SNUPN deficiency as the genetic etiology of a previously unrecognized subtype of muscular dystrophy and provide robust evidence of the role of SPN1 for muscle homeostasis.
Asunto(s)
Distrofias Musculares , Niño , Humanos , Distrofias Musculares/genética , Distrofias Musculares/metabolismo , Ribonucleoproteínas Nucleares Pequeñas/metabolismo , ARN/metabolismo , Empalme del ARN/genética , Empalmosomas/genética , Empalmosomas/metabolismoRESUMEN
Pathogenic variants in the DES gene clinically manifest as progressive skeletal muscle weakness, cardiomyopathy with associated severe arrhythmias, and respiratory insufficiency, and are collectively known as desminopathies. While most DES pathogenic variants act via a dominant mechanism, recessively acting variants have also been reported. Currently, there are no effective therapeutic interventions for desminopathies of any type. Here, we report an affected individual with rapidly progressive dilated cardiomyopathy, requiring heart transplantation at age 13 years, in the setting of childhood-onset skeletal muscle weakness. We identified biallelic DES variants (c.640-13 T>A and c.1288+1 G>A) and show aberrant DES gene splicing in the affected individual's muscle. Through the generation of an inducible lentiviral system, we transdifferentiated fibroblast cultures derived from the affected individual into myoblasts and validated this system using RNA sequencing. We tested rationally designed, custom antisense oligonucleotides to screen for splice correction in these transdifferentiated cells and a functional minigene splicing assay. However, rather than correctly redirecting splicing, we found them to induce undesired exon skipping. Our results indicate that, while an individual precision-based molecular therapeutic approach to splice-altering pathogenic variants is promising, careful preclinical testing is imperative for each novel variant to test the feasibility of this type of approach for translation.
Asunto(s)
Cardiomiopatías , Cardiomiopatía Dilatada , Adolescente , Humanos , Cardiomiopatías/genética , Cardiomiopatía Dilatada/genética , Mutación , Empalme del ARN/genéticaRESUMEN
Spinal muscular atrophy (SMA) is a genetic disorder that causes progressive degeneration of lower motor neurons and the subsequent loss of muscle function throughout the body. It is the second most common recessive disorder in individuals of European descent and is present in all populations. Accurate tools exist for diagnosing SMA from genome sequencing data. However, there are no publicly available tools for GRCh38-aligned data from panel or exome sequencing assays which continue to be used as first line tests for neuromuscular disorders. This deficiency creates a critical gap in our ability to diagnose SMA in large existing rare disease cohorts, as well as newly sequenced exome and panel datasets. We therefore developed and extensively validated a new tool - SMA Finder - that can diagnose SMA not only in genome, but also exome and panel sequencing samples aligned to GRCh37, GRCh38, or T2T-CHM13. It works by evaluating aligned reads that overlap the c.840 position of SMN1 and SMN2 in order to detect the most common molecular causes of SMA. We applied SMA Finder to 16,626 exomes and 3,911 genomes from heterogeneous rare disease cohorts sequenced at the Broad Institute Center for Mendelian Genomics as well as 1,157 exomes and 8,762 panel sequencing samples from Tartu University Hospital. SMA Finder correctly identified all 16 known SMA cases and reported nine novel diagnoses which have since been confirmed by clinical testing, with another four novel diagnoses undergoing validation. Notably, out of the 29 total SMA positive cases, 23 had an initial clinical diagnosis of muscular dystrophy, congenital myasthenic syndrome, or myopathy. This underscored the frequency with which SMA can be misdiagnosed as other neuromuscular disorders and confirmed the utility of using SMA Finder to reanalyze phenotypically diverse neuromuscular disease cohorts. Finally, we evaluated SMA Finder on 198,868 individuals that had both exome and genome sequencing data within the UK Biobank (UKBB) and found that SMA Finder's overall false positive rate was less than 1 / 200,000 exome samples, and its positive predictive value (PPV) was 97%. We also observed 100% concordance between UKBB exome and genome calls. This analysis showed that, even though it is located within a segmental duplication, the most common causal variant for SMA can be detected with comparable accuracy to monogenic disease variants in non-repetitive regions. Additionally, the high PPV demonstrated by SMA Finder, the existence of treatment options for SMA in which early diagnosis is imperative for therapeutic benefit, as well as widespread availability of clinical confirmatory testing for SMA, warrants the addition of SMN1 to the ACMG list of genes with reportable secondary findings after genome and exome sequencing.
RESUMEN
BACKGROUND: Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease of the upper and lower motor neurons with varying ages of onset, progression and pathomechanisms. Monogenic childhood-onset ALS, although rare, forms an important subgroup of ALS. We recently reported specific SPTLC1 variants resulting in sphingolipid overproduction as a cause for juvenile ALS. Here, we report six patients from six independent families with a recurrent, de novo, heterozygous variant in SPTLC2 c.778G>A [p.Glu260Lys] manifesting with juvenile ALS. METHODS: Clinical examination of the patients along with ancillary and genetic testing, followed by biochemical investigation of patients' blood and fibroblasts, was performed. RESULTS: All patients presented with early-childhood-onset progressive weakness, with signs and symptoms of upper and lower motor neuron degeneration in multiple myotomes, without sensory neuropathy. These findings were supported on ancillary testing including nerve conduction studies and electromyography, muscle biopsies and muscle ultrasound studies. Biochemical investigations in plasma and fibroblasts showed elevated levels of ceramides and unrestrained de novo sphingolipid synthesis. Our studies indicate that SPTLC2 variant [c.778G>A, p.Glu260Lys] acts distinctly from hereditary sensory and autonomic neuropathy (HSAN)-causing SPTLC2 variants by causing excess canonical sphingolipid biosynthesis, similar to the recently reported SPTLC1 ALS associated pathogenic variants. Our studies also indicate that serine supplementation, which is a therapeutic in SPTLC1 and SPTCL2-associated HSAN, is expected to exacerbate the excess sphingolipid synthesis in serine palmitoyltransferase (SPT)-associated ALS. CONCLUSIONS: SPTLC2 is the second SPT-associated gene that underlies monogenic, juvenile ALS and further establishes alterations of sphingolipid metabolism in motor neuron disease pathogenesis. Our findings also have important therapeutic implications: serine supplementation must be avoided in SPT-associated ALS, as it is expected to drive pathogenesis further.
Asunto(s)
Esclerosis Amiotrófica Lateral , Neuropatías Hereditarias Sensoriales y Autónomas , Enfermedades Neurodegenerativas , Niño , Humanos , Esclerosis Amiotrófica Lateral/genética , Esfingolípidos , Serina C-Palmitoiltransferasa/genética , Serina C-Palmitoiltransferasa/metabolismo , Neuropatías Hereditarias Sensoriales y Autónomas/genética , SerinaRESUMEN
BACKGROUND: Amyotrophic lateral sclerosis (ALS) leads to paralysis and death by progressive degeneration of motor neurons. Recently, specific gain-of-function mutations in SPTLC1 were identified in patients with juvenile form of ALS. SPTLC2 encodes the second catalytic subunit of the serine-palmitoyltransferase (SPT) complex. METHODS: We used the GENESIS platform to screen 700 ALS whole-genome and whole-exome data sets for variants in SPTLC2. The de-novo status was confirmed by Sanger sequencing. Sphingolipidomics was performed using liquid chromatography and high-resolution mass spectrometry. RESULTS: Two unrelated patients presented with early-onset progressive proximal and distal muscle weakness, oral fasciculations, and pyramidal signs. Both patients carried the novel de-novo SPTLC2 mutation, c.203T>G, p.Met68Arg. This variant lies within a single short transmembrane domain of SPTLC2, suggesting that the mutation renders the SPT complex irresponsive to regulation through ORMDL3. Confirming this hypothesis, ceramide and complex sphingolipid levels were significantly increased in patient plasma. Accordingly, excessive sphingolipid production was shown in mutant-expressing human embryonic kindney (HEK) cells. CONCLUSIONS: Specific gain-of-function mutations in both core subunits affect the homoeostatic control of SPT. SPTLC2 represents a new Mendelian ALS gene, highlighting a key role of dysregulated sphingolipid synthesis in the pathogenesis of juvenile ALS. Given the direct interaction of SPTLC1 and SPTLC2, this knowledge might open new therapeutic avenues for motor neuron diseases.
Asunto(s)
Esclerosis Amiotrófica Lateral , Serina C-Palmitoiltransferasa , Humanos , Esclerosis Amiotrófica Lateral/genética , Ceramidas , Mutación con Ganancia de Función , Mutación/genética , Serina C-Palmitoiltransferasa/genética , Serina C-Palmitoiltransferasa/química , EsfingolípidosRESUMEN
PURPOSE: We sought to delineate a multisystem disorder caused by recessive cysteine-rich with epidermal growth factor-like domains 1 (CRELD1) gene variants. METHODS: The impact of CRELD1 variants was characterized through an international collaboration utilizing next-generation DNA sequencing, gene knockdown, and protein overexpression in Xenopus tropicalis, and in vitro analysis of patient immune cells. RESULTS: Biallelic variants in CRELD1 were found in 18 participants from 14 families. Affected individuals displayed an array of phenotypes involving developmental delay, early-onset epilepsy, and hypotonia, with about half demonstrating cardiac arrhythmias and some experiencing recurrent infections. Most harbored a frameshift in trans with a missense allele, with 1 recurrent variant, p.(Cys192Tyr), identified in 10 families. X tropicalis tadpoles with creld1 knockdown displayed developmental defects along with increased susceptibility to induced seizures compared with controls. Additionally, human CRELD1 harboring missense variants from affected individuals had reduced protein function, indicated by a diminished ability to induce craniofacial defects when overexpressed in X tropicalis. Finally, baseline analyses of peripheral blood mononuclear cells showed similar proportions of immune cell subtypes in patients compared with healthy donors. CONCLUSION: This patient cohort, combined with experimental data, provide evidence of a multisystem clinical syndrome mediated by recessive variants in CRELD1.