Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 13133, 2024 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-38849432

RESUMEN

The short-lived nature and heterogeneity of Natural Killer (NK) cells limit the development of NK cell-based therapies, despite their proven safety and efficacy against cancer. Here, we describe the biological basis, detailed phenotype and function of long-lived anti-tumour human NK cells (CD56highCD16+), obtained without cell sorting or feeder cells, after priming of peripheral blood cells with Bacillus Calmette-Guérin (BCG). Further, we demonstrate that survival doses of a cytokine combination, excluding IL18, administered just weekly to BCG-primed NK cells avoids innate lymphocyte exhaustion and leads to specific long-term proliferation of innate cells that exert potent cytotoxic function against a broad range of solid tumours, mainly through NKG2D. Strikingly, a NKG2C+CD57-FcεRIγ+ NK cell population expands after BCG and cytokine stimulation, independently of HCMV serology. This strategy was exploited to rescue anti-tumour NK cells even from the suppressor environment of cancer patients' bone marrow, demonstrating that BCG confers durable anti-tumour features to NK cells.


Asunto(s)
Proliferación Celular , Células Asesinas Naturales , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/efectos de los fármacos , Humanos , Proliferación Celular/efectos de los fármacos , Neoplasias/inmunología , Neoplasias/tratamiento farmacológico , Vacuna BCG/inmunología , Vacuna BCG/administración & dosificación , Mycobacterium bovis/inmunología , Activación de Linfocitos/efectos de los fármacos , Subfamilia K de Receptores Similares a Lectina de Células NK/metabolismo , Interleucinas/metabolismo , Antígeno CD56/metabolismo , Subfamília C de Receptores Similares a Lectina de Células NK/metabolismo
2.
Development ; 151(13)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38856078

RESUMEN

Embryonic development is a complex and dynamic process that unfolds over time and involves the production and diversification of increasing numbers of cells. The impact of developmental time on the formation of the central nervous system is well documented, with evidence showing that time plays a crucial role in establishing the identity of neuronal subtypes. However, the study of how time translates into genetic instructions driving cell fate is limited by the scarcity of suitable experimental tools. We introduce BirthSeq, a new method for isolating and analyzing cells based on their birth date. This innovative technique allows for in vivo labeling of cells, isolation via fluorescence-activated cell sorting, and analysis using high-throughput techniques. We calibrated the BirthSeq method for developmental organs across three vertebrate species (mouse, chick and gecko), and utilized it for single-cell RNA sequencing and novel spatially resolved transcriptomic approaches in mouse and chick, respectively. Overall, BirthSeq provides a versatile tool for studying virtually any tissue in different vertebrate organisms, aiding developmental biology research by targeting cells and their temporal cues.


Asunto(s)
Análisis de la Célula Individual , Animales , Ratones , Análisis de la Célula Individual/métodos , Embrión de Pollo , Lagartos/genética , Lagartos/embriología , Desarrollo Embrionario/genética , Transcriptoma/genética , Citometría de Flujo/métodos , Vertebrados/genética , Separación Celular/métodos , Pollos , Análisis de Secuencia de ARN/métodos
4.
Adv Exp Med Biol ; 1441: 435-458, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38884724

RESUMEN

Over the last few decades, the study of congenital heart disease (CHD) has benefited from various model systems and the development of molecular biological techniques enabling the analysis of single gene as well as global effects. In this chapter, we first describe different models including CHD patients and their families, animal models ranging from invertebrates to mammals, and various cell culture systems. Moreover, techniques to experimentally manipulate these models are discussed. Second, we introduce cardiac phenotyping technologies comprising the analysis of mouse and cell culture models, live imaging of cardiogenesis, and histological methods for fixed hearts. Finally, the most important and latest molecular biotechniques are described. These include genotyping technologies, different applications of next-generation sequencing, and the analysis of transcriptome, epigenome, proteome, and metabolome. In summary, the models and technologies presented in this chapter are essential to study the function and development of the heart and to understand the molecular pathways underlying CHD.


Asunto(s)
Cardiopatías Congénitas , Animales , Humanos , Cardiopatías Congénitas/genética , Cardiopatías Congénitas/metabolismo , Modelos Animales de Enfermedad , Ratones , Fenotipo , Secuenciación de Nucleótidos de Alto Rendimiento , Técnicas de Cultivo de Célula/métodos
5.
Cell Mol Life Sci ; 81(1): 199, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38683377

RESUMEN

Tyrosine kinase 2 (TYK2) is involved in type I interferon (IFN-I) signaling through IFN receptor 1 (IFNAR1). This signaling pathway is crucial in the early antiviral response and remains incompletely understood on B cells. Therefore, to understand the role of TYK2 in B cells, we studied these cells under homeostatic conditions and following in vitro activation using Tyk2-deficient (Tyk2-/-) mice. Splenic B cell subpopulations were altered in Tyk2-/- compared to wild type (WT) mice. Marginal zone (MZ) cells were decreased and aged B cells (ABC) were increased, whereas follicular (FO) cells remained unchanged. Likewise, there was an imbalance in transitional B cells in juvenile Tyk2-/- mice. RNA sequencing analysis of adult MZ and FO cells isolated from Tyk2-/- and WT mice in homeostasis revealed altered expression of IFN-I and Toll-like receptor 7 (TLR7) signaling pathway genes. Flow cytometry assays corroborated a lower expression of TLR7 in MZ B cells from Tyk2-/- mice. Splenic B cell cultures showed reduced proliferation and differentiation responses after activation with TLR7 ligands in Tyk2-/- compared to WT mice, with a similar response to lipopolysaccharide (LPS) or anti-CD40 + IL-4. IgM, IgG, IL-10 and IL-6 secretion was also decreased in Tyk2-/- B cell cultures. This reduced response of the TLR7 pathway in Tyk2-/- mice was partially restored by IFNα addition. In conclusion, there is a crosstalk between TYK2 and TLR7 mediated by an IFN-I feedback loop, which contributes to the establishment of MZ B cells and to B cell proliferation and differentiation.


Asunto(s)
Linfocitos B , Interferón Tipo I , Transducción de Señal , Bazo , TYK2 Quinasa , Receptor Toll-Like 7 , Animales , Ratones , Linfocitos B/metabolismo , Linfocitos B/inmunología , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Interferón Tipo I/metabolismo , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/genética , Ratones Endogámicos C57BL , Ratones Noqueados , Bazo/citología , Bazo/metabolismo , Receptor Toll-Like 7/metabolismo , Receptor Toll-Like 7/genética , TYK2 Quinasa/metabolismo , TYK2 Quinasa/genética
6.
Cell Rep ; 43(2): 113705, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38307025

RESUMEN

Nerve growth factor receptor (NGFR) is expressed by follicular dendritic cells (FDCs). However, the role of NGFR in the humoral response is not well defined. Here, we study the effect of Ngfr loss on lymph node organization and function, demonstrating that Ngfr depletion leads to spontaneous germinal center (GC) formation and an expansion of the GC B cell compartment. In accordance with this effect, stromal cells are altered in Ngfr-/- mice with a higher frequency of FDCs, characterized by CD21/35, MAdCAM-1, and VCAM-1 overexpression. GCs are located ectopically in Ngfr-/- mice, with lost polarization together with impaired high-affinity antibody production and an increase in circulating autoantibodies. We observe higher levels of autoantibodies in Bcl2 Tg/Ngfr-/- mice, concomitant with a higher incidence of autoimmunity and lower overall survival. Our work shows that NGFR is involved in maintaining GC structure and function, participating in GC activation, antibody production, and immune tolerance.


Asunto(s)
Receptor de Factor de Crecimiento Nervioso , Receptores de Factor de Crecimiento Nervioso , Animales , Ratones , Autoanticuerpos , Células Dendríticas Foliculares , Centro Germinal
7.
Biomed Pharmacother ; 173: 116299, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38401525

RESUMEN

BACKGROUND/AIMS: Changes in gene expression profiles among individuals with inflammatory bowel diseases (IBDs) could potentially influence the responsiveness to anti-TNF treatment. The aim of this study was to identify genes that could serve as predictors of early response to anti-TNF therapies in pediatric IBD patients prior to the initiation of treatment. METHODS: We conducted a prospective, longitudinal, and multicenter study, enrolling 24 pediatric IBD patients aged less than 18 years who were initiating treatment with either infliximab or adalimumab. RNA-seq from blood samples was analyzed using the DESeq2 library by comparing responders and non-responders to anti-TNF drugs. RESULTS: Bioinformatic analyses unveiled 102 differentially expressed genes, with 99 genes exhibiting higher expression in responders compared to non-responders prior to the initiation of anti-TNF therapy. Functional enrichment analyses highlighted defense response to Gram-negative bacteria (FDR = 2.3 ×10-7) as the most significant biological processes, and hemoglobin binding (FDR = 0.002), as the most significant molecular function. Gene Set Enrichment Analysis (GSEA) revealed notable enrichment in transcriptional misregulation in cancer (FDR = 0.016). Notably, 13 genes (CEACAM8, CEACAM6, CILP2, COL17A1, OLFM4, INHBA, LCN2, LTF, MMP8, DEFA4, PRTN3, AZU1, and ELANE) were selected for validation, and a consistent trend of increased expression in responders prior to drug administration was observed for most of these genes, with findings for 4 of them being statistically significant (CEACAM8, LCN2, LTF2, and PRTN3). CONCLUSIONS: We identified 102 differentially expressed genes involved in the response to anti-TNF drugs in children with IBDs and validated CEACAM8, LCN2, LTF2, and PRTN3. Genes participating in defense response to Gram-negative bacterium, serine-type endopeptidase activity, and transcriptional misregulation in cancer are good candidates for anticipating the response to anti-TNF drugs in children with IBDs.


Asunto(s)
Enfermedades Inflamatorias del Intestino , Neoplasias , Niño , Humanos , Biomarcadores/metabolismo , Expresión Génica , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Enfermedades Inflamatorias del Intestino/genética , Preparaciones Farmacéuticas , Estudios Prospectivos , Inhibidores del Factor de Necrosis Tumoral/uso terapéutico , Factor de Necrosis Tumoral alfa , Adolescente
8.
Circ Res ; 134(4): 411-424, 2024 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-38258600

RESUMEN

BACKGROUND: APOE is a known genetic contributor to cardiovascular disease, but the differential role APOE alleles play in subclinical atherosclerosis remains unclear. METHODS: The PESA (Progression of Early Subclinical Atherosclerosis) is an observational cohort study that recruited 4184 middle-aged asymptomatic individuals to be screened for cardiovascular risk and multiterritorial subclinical atherosclerosis. Participants were APOE-genotyped, and omics data were additionally evaluated. RESULTS: In the PESA study, the frequencies for APOE -ε2, -ε3, and -ε4 alleles were 0.060, 0.844, and 0.096, respectively. This study included a subcohort of 3887 participants (45.8±4.3 years of age; 62% males). As expected, APOE-ε4 carriers were at the highest risk for cardiovascular disease and had significantly greater odds of having subclinical atherosclerosis compared with ε3/ε3 carriers, which was mainly explained by their higher levels of low-density lipoprotein (LDL)-cholesterol. In turn, APOE-ε2 carriers were at the lowest risk for cardiovascular disease and had significantly lower odds of having subclinical atherosclerosis in several vascular territories (carotids: 0.62 [95% CI, 0.47-0.81]; P=0.00043; femorals: 0.60 [0.47-0.78]; P=9.96×10-5; coronaries: 0.53 [0.39-0.74]; P=0.00013; and increased PESA score: 0.58 [0.48-0.71]; P=3.16×10-8). This APOE-ε2 atheroprotective effect was mostly independent of the associated lower LDL-cholesterol levels and other cardiovascular risk factors. The protection conferred by the ε2 allele was greater with age (50-54 years: 0.49 [95% CI, 0.32-0.73]; P=0.00045), and normal (<150 mg/dL) levels of triglycerides (0.54 [0.44-0.66]; P=4.70×10-9 versus 0.90 [0.57-1.43]; P=0.67 if ≥150 mg/dL). Omics analysis revealed an enrichment of several canonical pathways associated with anti-inflammatory mechanisms together with the modulation of erythrocyte homeostasis, coagulation, and complement activation in ε2 carriers that might play a relevant role in the ε2's atheroprotective effect. CONCLUSIONS: This work sheds light on the role of APOE in cardiovascular disease development with important therapeutic and prevention implications on cardiovascular health, especially in early midlife. REGISTRATION: URL: https://www.clinicaltrials.gov: NCT01410318.


Asunto(s)
Aterosclerosis , Enfermedades Cardiovasculares , Masculino , Persona de Mediana Edad , Humanos , Femenino , Apolipoproteína E2/genética , Predisposición Genética a la Enfermedad , Apolipoproteínas E/genética , Enfermedades Cardiovasculares/genética , Genotipo , Aterosclerosis/epidemiología , Aterosclerosis/genética , LDL-Colesterol , Alelos
9.
EMBO J ; 42(23): e113714, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37916875

RESUMEN

Primary Sjögren's syndrome (pSS) is an inflammatory autoimmune disorder largely mediated by type I and II interferon (IFN). The potential contribution of innate immune cells, such as natural killer (NK) cells and dendritic cells (DC), to the pSS pathology remains understudied. Here, we identified an enriched CD16+ CD56hi NK cell subset associated with higher cytotoxic function, as well as elevated proportions of inflammatory CD64+ conventional dendritic cell (cDC2) subtype that expresses increased levels of MICa/b, the ligand for the activating receptor NKG2D, in pSS individuals. Circulating cDC2 from pSS patients efficiently induced activation of cytotoxic NK cells ex vivo and were found in proximity to CD56+ NK cells in salivary glands (SG) from pSS patients. Interestingly, transcriptional activation of IFN signatures associated with the RIG-I/DDX60 pathway, IFN I receptor, and its target genes regulate the expression of NKG2D ligands on cDC2 from pSS patients. Finally, increased proportions of CD64hi RAE-1+ cDC2 and NKG2D+ CD11b+ CD27+ NK cells were present in vivo in the SG after poly I:C injection. Our study provides novel insight into the contribution and interplay of NK and cDC2 in pSS pathology and identifies new potential therapy targets.


Asunto(s)
Autoinmunidad , Subfamilia K de Receptores Similares a Lectina de Células NK , Humanos , Subfamilia K de Receptores Similares a Lectina de Células NK/genética , Subfamilia K de Receptores Similares a Lectina de Células NK/metabolismo , Células Asesinas Naturales , Células Dendríticas
10.
Nat Cardiovasc Res ; 2: 2023530-549, 2023 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-37745941

RESUMEN

The Notch pathway is a major regulator of endothelial transcriptional specification. Targeting the Notch receptors or Delta-like ligand 4 (Dll4) dysregulates angiogenesis. Here, by analyzing single and compound genetic mutants for all Notch signaling members, we find significant differences in the way ligands and receptors regulate liver vascular homeostasis. Loss of Notch receptors caused endothelial hypermitogenic cell-cycle arrest and senescence. Conversely, Dll4 loss triggered a strong Myc-driven transcriptional switch inducing endothelial proliferation and the tip-cell state. Myc loss suppressed the induction of angiogenesis in the absence of Dll4, without preventing the vascular enlargement and organ pathology. Similarly, inhibition of other pro-angiogenic pathways, including MAPK/ERK and mTOR, had no effect on the vascular expansion induced by Dll4 loss; however, anti-VEGFA treatment prevented it without fully suppressing the transcriptional and metabolic programs. This study shows incongruence between single-cell transcriptional states, vascular phenotypes and related pathophysiology. Our findings also suggest that the vascular structure abnormalization, rather than neoplasms, causes the reported anti-Dll4 antibody toxicity.

13.
Eur Heart J ; 44(29): 2698-2709, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37339167

RESUMEN

AIMS: Epigenetic age is emerging as a personalized and accurate predictor of biological age. The aim of this article is to assess the association of subclinical atherosclerosis with accelerated epigenetic age and to investigate the underlying mechanisms mediating this association. METHODS AND RESULTS: Whole blood methylomics, transcriptomics, and plasma proteomics were obtained for 391 participants of the Progression of Early Subclinical Atherosclerosis study. Epigenetic age was calculated from methylomics data for each participant. Its divergence from chronological age is termed epigenetic age acceleration. Subclinical atherosclerosis burden was estimated by multi-territory 2D/3D vascular ultrasound and by coronary artery calcification. In healthy individuals, the presence, extension, and progression of subclinical atherosclerosis were associated with a significant acceleration of the Grim epigenetic age, a predictor of health and lifespan, regardless of traditional cardiovascular risk factors. Individuals with an accelerated Grim epigenetic age were characterized by an increased systemic inflammation and associated with a score of low-grade, chronic inflammation. Mediation analysis using transcriptomics and proteomics data revealed key pro-inflammatory pathways (IL6, Inflammasome, and IL10) and genes (IL1B, OSM, TLR5, and CD14) mediating the association between subclinical atherosclerosis and epigenetic age acceleration. CONCLUSION: The presence, extension, and progression of subclinical atherosclerosis in middle-aged asymptomatic individuals are associated with an acceleration in the Grim epigenetic age. Mediation analysis using transcriptomics and proteomics data suggests a key role of systemic inflammation in this association, reinforcing the relevance of interventions on inflammation to prevent cardiovascular disease.


Asunto(s)
Aterosclerosis , Enfermedad de la Arteria Coronaria , Persona de Mediana Edad , Humanos , Multiómica , Aterosclerosis/genética , Inflamación/genética , Epigénesis Genética , Factores de Riesgo
16.
Nat Commun ; 14(1): 12, 2023 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-36596811

RESUMEN

Here we explored the role of interleukin-1ß (IL-1ß) repressor cytokine, IL-1 receptor antagonist (IL-1rn), in both healthy and abnormal hematopoiesis. Low IL-1RN is frequent in acute myeloid leukemia (AML) patients and represents a prognostic marker of reduced survival. Treatments with IL-1RN and the IL-1ß monoclonal antibody canakinumab reduce the expansion of leukemic cells, including CD34+ progenitors, in AML xenografts. In vivo deletion of IL-1rn induces hematopoietic stem cell (HSC) differentiation into the myeloid lineage and hampers B cell development via transcriptional activation of myeloid differentiation pathways dependent on NFκB. Low IL-1rn is present in an experimental model of pre-leukemic myelopoiesis, and IL-1rn deletion promotes myeloproliferation, which relies on the bone marrow hematopoietic and stromal compartments. Conversely, IL-1rn protects against pre-leukemic myelopoiesis. Our data reveal that HSC differentiation is controlled by balanced IL-1ß/IL-1rn levels under steady-state, and that loss of repression of IL-1ß signaling may underlie pre-leukemic lesion and AML progression.


Asunto(s)
Leucemia Mieloide Aguda , Receptores de Interleucina-1 , Humanos , Receptores de Interleucina-1/genética , Médula Ósea , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Proliferación Celular , Antígenos CD34
17.
Kidney Int ; 103(4): 686-701, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36565807

RESUMEN

Increased expression of AP-1 transcription factor components has been reported in acute kidney injury (AKI). However, the role of specific components, such as Fosl1, in tubular cells or AKI is unknown. Upstream regulator analysis of murine nephrotoxic AKI transcriptomics identified AP-1 as highly upregulated. Among AP-1 canonical components, Fosl1 was found to be upregulated in two transcriptomics datasets from nephrotoxic murine AKI induced by folic acid or cisplatin and from proximal tubular cells exposed to TWEAK, a cytokine mediator of AKI. Fosl1 was minimally expressed in the kidneys of control uninjured mice. Increased Fosl1 protein was localized to proximal tubular cell nuclei in AKI. In human AKI, FOSL1 was found present in proximal tubular cells in kidney sections and in urine along with increased urinary FOSL1 mRNA. Selective Fosl1 deficiency in proximal tubular cells (Fosl1Δtub) increased the severity of murine cisplatin- or folate-induced AKI as characterized by lower kidney function, more severe kidney inflammation and Klotho downregulation. Indeed, elevated AP-1 activity was observed after cisplatin-induced AKI in Fosl1Δtub mice compared to wild-type mice. More severe Klotho downregulation preceded more severe kidney dysfunction. The Klotho promoter was enriched in Fosl1 binding sites and Fosl1 bound to the Klotho promoter in cisplatin-AKI. In cultured proximal tubular cells, Fosl1 targeting increased the proinflammatory response and downregulated Klotho. In vivo, recombinant Klotho administration protected Fosl1Δtub mice from cisplatin-AKI. Thus, increased proximal tubular Fosl1 expression during AKI is an adaptive response, preserves Klotho, and limits the severity of tubular cell injury and AKI.


Asunto(s)
Lesión Renal Aguda , Cisplatino , Animales , Humanos , Ratones , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/genética , Lesión Renal Aguda/prevención & control , Células Cultivadas , Cisplatino/toxicidad , Riñón/metabolismo , Ratones Endogámicos C57BL , Factor de Transcripción AP-1/genética , Factor de Transcripción AP-1/metabolismo , Proteínas Klotho/metabolismo
18.
Nature ; 613(7942): 169-178, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36544018

RESUMEN

Tissue regeneration requires coordination between resident stem cells and local niche cells1,2. Here we identify that senescent cells are integral components of the skeletal muscle regenerative niche that repress regeneration at all stages of life. The technical limitation of senescent-cell scarcity3 was overcome by combining single-cell transcriptomics and a senescent-cell enrichment sorting protocol. We identified and isolated different senescent cell types from damaged muscles of young and old mice. Deeper transcriptome, chromatin and pathway analyses revealed conservation of cell identity traits as well as two universal senescence hallmarks (inflammation and fibrosis) across cell type, regeneration time and ageing. Senescent cells create an aged-like inflamed niche that mirrors inflammation associated with ageing (inflammageing4) and arrests stem cell proliferation and regeneration. Reducing the burden of senescent cells, or reducing their inflammatory secretome through CD36 neutralization, accelerates regeneration in young and old mice. By contrast, transplantation of senescent cells delays regeneration. Our results provide a technique for isolating in vivo senescent cells, define a senescence blueprint for muscle, and uncover unproductive functional interactions between senescent cells and stem cells in regenerative niches that can be overcome. As senescent cells also accumulate in human muscles, our findings open potential paths for improving muscle repair throughout life.


Asunto(s)
Envejecimiento , Senescencia Celular , Inflamación , Músculo Esquelético , Regeneración , Nicho de Células Madre , Anciano , Animales , Humanos , Ratones , Envejecimiento/metabolismo , Envejecimiento/fisiología , Senescencia Celular/fisiología , Inflamación/metabolismo , Inflamación/fisiopatología , Músculo Esquelético/fisiología , Músculo Esquelético/fisiopatología , Células Madre/fisiología , Fibrosis/fisiopatología , Nicho de Células Madre/fisiología , Transcriptoma , Cromatina/genética , Gerociencia
19.
Geroscience ; 45(2): 1231-1236, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-35752705

RESUMEN

Clonal hematopoiesis of indeterminate potential (CHIP), defined as the presence of somatic mutations in cancer-related genes in blood cells in the absence of hematological cancer, has recently emerged as an important risk factor for several age-related conditions, especially cardiovascular disease. CHIP is strongly associated with normal aging, but its role in premature aging syndromes is unknown. Hutchinson-Gilford progeria syndrome (HGPS) is an ultra-rare genetic condition driven by the accumulation of a truncated form of the lamin A protein called progerin. HGPS patients exhibit several features of accelerated aging and typically die from cardiovascular complications in their early teens. Previous studies have shown normal hematological parameters in HGPS patients, except for elevated platelets, and low levels of lamin A expression in hematopoietic cells relative to other cell types in solid tissues, but the prevalence of CHIP in HGPS remains unexplored. To investigate the potential role of CHIP in HGPS, we performed high-sensitivity targeted sequencing of CHIP-related genes in blood DNA samples from a cohort of 47 HGPS patients. As a control, the same sequencing strategy was applied to blood DNA samples from middle-aged and elderly individuals, expected to exhibit a biological age and cardiovascular risk profile similar to HGPS patients. We found that CHIP is not prevalent in HGPS patients, in marked contrast to our observations in individuals who age normally. Thus, our study unveils a major difference between HGPS and normal aging and provides conclusive evidence that CHIP is not frequent in HGPS and, therefore, is unlikely to contribute to the pathophysiology of this accelerated aging syndrome.


Asunto(s)
Enfermedades Cardiovasculares , Progeria , Humanos , Persona de Mediana Edad , Anciano , Adolescente , Progeria/genética , Hematopoyesis Clonal , Lamina Tipo A/genética , Envejecimiento/genética , Envejecimiento/metabolismo
20.
Circulation ; 147(1): 47-65, 2023 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-36325906

RESUMEN

BACKGROUND: The complex genetics underlying human cardiac disease is evidenced by its heterogenous manifestation, multigenic basis, and sporadic occurrence. These features have hampered disease modeling and mechanistic understanding. Here, we show that 2 structural cardiac diseases, left ventricular noncompaction (LVNC) and bicuspid aortic valve, can be caused by a set of inherited heterozygous gene mutations affecting the NOTCH ligand regulator MIB1 (MINDBOMB1) and cosegregating genes. METHODS: We used CRISPR-Cas9 gene editing to generate mice harboring a nonsense or a missense MIB1 mutation that are both found in LVNC families. We also generated mice separately carrying these MIB1 mutations plus 5 additional cosegregating variants in the ASXL3, APCDD1, TMX3, CEP192, and BCL7A genes identified in these LVNC families by whole exome sequencing. Histological, developmental, and functional analyses of these mouse models were carried out by echocardiography and cardiac magnetic resonance imaging, together with gene expression profiling by RNA sequencing of both selected engineered mouse models and human induced pluripotent stem cell-derived cardiomyocytes. Potential biochemical interactions were assayed in vitro by coimmunoprecipitation and Western blot. RESULTS: Mice homozygous for the MIB1 nonsense mutation did not survive, and the mutation caused LVNC only in heteroallelic combination with a conditional allele inactivated in the myocardium. The heterozygous MIB1 missense allele leads to bicuspid aortic valve in a NOTCH-sensitized genetic background. These data suggest that development of LVNC is influenced by genetic modifiers present in affected families, whereas valve defects are highly sensitive to NOTCH haploinsufficiency. Whole exome sequencing of LVNC families revealed single-nucleotide gene variants of ASXL3, APCDD1, TMX3, CEP192, and BCL7A cosegregating with the MIB1 mutations and LVNC. In experiments with mice harboring the orthologous variants on the corresponding Mib1 backgrounds, triple heterozygous Mib1 Apcdd1 Asxl3 mice showed LVNC, whereas quadruple heterozygous Mib1 Cep192 Tmx3;Bcl7a mice developed bicuspid aortic valve and other valve-associated defects. Biochemical analysis suggested interactions between CEP192, BCL7A, and NOTCH. Gene expression profiling of mutant mouse hearts and human induced pluripotent stem cell-derived cardiomyocytes revealed increased cardiomyocyte proliferation and defective morphological and metabolic maturation. CONCLUSIONS: These findings reveal a shared genetic substrate underlying LVNC and bicuspid aortic valve in which MIB1-NOTCH variants plays a crucial role in heterozygous combination with cosegregating genetic modifiers.


Asunto(s)
Enfermedad de la Válvula Aórtica Bicúspide , Cardiomiopatías , Cardiopatías Congénitas , Células Madre Pluripotentes Inducidas , Humanos , Animales , Ratones , Cardiopatías Congénitas/complicaciones , Cardiomiopatías/etiología , Miocitos Cardíacos , Válvula Aórtica/diagnóstico por imagen , Factores de Transcripción , Proteínas Cromosómicas no Histona
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA