Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sci Rep ; 7(1): 3558, 2017 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-28620230

RESUMEN

Magnetospirillum gryphiswaldense is a helix-shaped magnetotactic bacterium that synthesizes iron-oxide nanocrystals, which allow navigation along the geomagnetic field. The bacterium has already been thoroughly investigated at the molecular and cellular levels. However, the fundamental physical property enabling it to perform magnetotaxis, its magnetic moment, remains to be elucidated at the single cell level. We present a method based on magnetic tweezers; in combination with Stokesian dynamics and Boundary Integral Method calculations, this method allows the simultaneous measurement of the magnetic moments of multiple single bacteria. The method is demonstrated by quantifying the distribution of the individual magnetic moments of several hundred cells of M. gryphiswaldense. In contrast to other techniques for measuring the average magnetic moment of bacterial populations, our method accounts for the size and the helical shape of each individual cell. In addition, we determined the distribution of the saturation magnetic moments of the bacteria from electron microscopy data. Our results are in agreement with the known relative magnetization behavior of the bacteria. Our method can be combined with single cell imaging techniques and thus can address novel questions about the functions of components of the molecular magnetosome biosynthesis machinery and their correlation with the resulting magnetic moment.


Asunto(s)
Fenómenos Fisiológicos Bacterianos , Campos Magnéticos , Magnetospirillum/fisiología , Algoritmos , Fenómenos Magnéticos , Modelos Teóricos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA