Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Respir Res ; 25(1): 355, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39354535

RESUMEN

INTRODUCTION: Pyroptosis, inflammatory necrosis of cells, is a programmed cell death involved in the pathological process of diseases. Endoplasmic reticulum stress (ERS), as a protective stress response of cell, decreases the unfold protein concentration to inhibit the unfold protein agglutination. Whereas the relationship between endoplasmic reticulum stress and pyroptosis in pulmonary hypertension (PH) remain unknown. Previous evident indicated that circular RNA (circRNA) can participate in several biological process, including cell pyroptosis. However, the mechanism of circRNA regulate pyroptosis of pulmonary artery smooth muscle cells through endoplasmic reticulum stress still unclear. Here, we proved that circSSR1 was down-regulate expression during hypoxia in pulmonary artery smooth muscle cells, and over-expression of circSSR1 inhibit pyroptosis both in vitro and in vivo under hypoxic. Our experiments have indicated that circSSR1 could promote host gene SSR1 translation via m6A to activate ERS leading to pulmonary artery smooth muscle cell pyroptosis. In addition, our results showed that G3BP1 as upstream regulator mediate the expression of circSSR1 under hypoxia. These results highlight a new regulatory mechanism for pyroptosis and provide a potential therapy target for pulmonary hypertension. METHODS: RNA-FISH and qRT-PCR were showed the location of circSSR1 and expression change. RNA pull-down and RIP verify the circSSR1 combine with YTHDF1. Western blotting, PI staining and LDH release were used to explore the role of circSSR1 in PASMCs pyroptosis. RESULTS: CircSSR1 was markedly downregulated in hypoxic PASMCs. Knockdown CircSSR1 inhibited hypoxia induced PASMCs pyroptosis in vivo and in vitro. Mechanistically, circSSR1 combine with YTHDF1 to promote SSR1 protein translation rely on m6A, activating pyroptosis via endoplasmic reticulum stress. Furthermore, G3BP1 induce circSSR1 degradation under hypoxic. CONCLUSION: Our findings clarify the role of circSSR1 up-regulated parental protein SSR1 expression mediate endoplasmic reticulum stress leading to pyroptosis in PASMCs, ultimately promoting the development of pulmonary hypertension.


Asunto(s)
Estrés del Retículo Endoplásmico , Miocitos del Músculo Liso , Arteria Pulmonar , Piroptosis , Estrés del Retículo Endoplásmico/fisiología , Piroptosis/fisiología , Arteria Pulmonar/metabolismo , Arteria Pulmonar/patología , Animales , Ratones , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , ARN Circular/metabolismo , ARN Circular/genética , Masculino , Células Cultivadas , Ratones Endogámicos C57BL , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología , Hipertensión Pulmonar/metabolismo , Hipertensión Pulmonar/patología , Hipertensión Pulmonar/genética , Proteínas de la Membrana
2.
Plant Physiol Biochem ; 216: 109127, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39284252

RESUMEN

Rising atmospheric carbon dioxide (CO2) and soil heavy metal pollution affect crop safety and production. Exposure to elevated CO2 (ECO2) increases cadmium (Cd) uptake in some crops like wheat and rice, however, it remains unclear how ECO2 affects Cd uptake by Brassica napus. Here, we investigated the responses of B. napus seedlings exposed to ECO2 and Cd through analyses of physiology, transcriptome, metabolome, and rhizosphere microbes. Compared with Cd-stress alone (Cd50_ACO2), ECO2 boosted the uptake of Cd by B. napus roots by 38.78% under coupled stresses (Cd50_ECO2). The biomass and leaf chlorophyll a content increased by 38.49% and 79.66% respectively in Cd50_ECO2 relative to Cd50_ACO2. Activities of superoxide dismutase (SOD) and peroxidase (POD) enhanced by 8.42% and 185.01%, respectively, while glutathione (GSH) and ascorbic acid (AsA) contents increased by 16.44% and 52.48%, and abundances of rhizosphere microbes changed significantly under coupled stresses (Cd50_ECO2) relative to Cd-stress alone (Cd50_ACO2). Also, the upregulation of glutathione, glutathione transferase genes, and heavy metal ATPase expression promoted the detoxification effect of rapeseed on Cd. Changes in the expression of transcription factors like MAPK, WRKY, BAK1 and PR1, as well as changes in metabolic pathways like ß-alanine, may be involved in the regulatory mechanism of stress response. These findings provide new insights for studying the regulatory mechanism of rapeseed under ECO2 on soil Cd stress, and also provide a basis for further research on Cd tolerant rapeseed varieties in the future climate context.

3.
Food Chem X ; 24: 101802, 2024 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-39310890

RESUMEN

The flavor profiles of cherries cultivated in greenhouse and those grown in open fields show significant variations, however, the underlying flavor-contributing factors remain unidentified. Hence, a joint investigation with widely targeted metabolomics analysis, volatile fingerprint analysis, and descriptive sensory analysis for the Russia 8 and Tieton cherry cultivars was conducted using UPLC-MS/MS and GC × GC-TOFMS to clarify the flavor differences of open-air and greenhouse-grown cherries. The study found that open-air cultivation could lead to the accumulation of non-volatile flavor substances and prompted appearance of higher acidity, astringency, plum-like flavor, and fresh herb notes; most of differential metabolites were significantly positively correlated with astringency, plum-like flavor and bitterness. Through correlation analysis and path analysis, potential flavor components and key important pathways contributing to flavor disparities were provided, and light intensity, soil moisture content, temperature and humidity were inferred as the main factors affecting the flavor profiles of open-air and greenhouse-grown cherries.

4.
Food Chem ; 460(Pt 2): 140667, 2024 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-39094348

RESUMEN

As a highly toxic aldehyde, acrolein is widely found in diet and environment, and can be produced endogenously, posing a serious threat to human health. Herein, we designed a novel fluorescent nanoplatform integrating carbon dots­manganese dioxide (CDs-MnO2) and glutathione (GSH) for all-in-one sensing and removal of acrolein. By converting Mn4+ to free Mn2+, GSH inhibited the inner filter effect (IFE) of MnO2 nanosheets, and the Michael addition of acrolein with GSH inhibited the GSH-induced Mn4+ conversion, forming an "off-on-off" fluorescence response of CDs. The developed fluorescent nanoplatform exhibited high sensitivity (LOD was 0.067 µM) and selectivity for the simultaneous detection and removal of acrolein. The combination of CDs-MnO2 hydrogels with smartphones realized the point-of-care detection of acrolein, yielding satisfactory results (recovery rates varied between 97.01-104.65%, and RSD ranged from 1.42 to 4.16%). Moreover, the capability of the nanoplatform was investigated for on-site evaluating acrolein scavengers' efficacy, demonstrating excellent potential for practical application.


Asunto(s)
Acroleína , Colorantes Fluorescentes , Compuestos de Manganeso , Óxidos , Puntos Cuánticos , Acroleína/química , Compuestos de Manganeso/química , Óxidos/química , Colorantes Fluorescentes/química , Puntos Cuánticos/química , Glutatión/química , Espectrometría de Fluorescencia , Límite de Detección , Carbono/química
5.
J Hazard Mater ; 476: 135049, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-38970973

RESUMEN

Sulfate-reducing bacteria (SRB) are known to alter methylmercury (MeHg) production in paddy soil, but the effect of SRB on MeHg dynamics in rhizosphere and rice plants remains to be fully elucidated. The present study investigated the impact of SRB on MeHg levels in unsterilized and γ-sterilized mercury-polluted paddy soils, with the aim to close this knowledge gap. Results showed that the presence of SRB reduced MeHg production by ∼22 % and ∼17 % in the two soils, but elevated MeHg contents by approximately 55 % and 99 % in rice grains, respectively. Similar trend at smaller scales were seen in roots and shoots. SRB inoculation exerted the most profound impact on amino acid metabolism in roots, with the relative response of L-arginine positively linking to MeHg concentrations in rhizosphere. The SRB-induced enrichment of MeHg in rice plants may be interpreted by the stronger presence of endophytic nitrogen-related microbes (e.g. Methylocaldum, Hyphomicrobium and Methylocystis) and TGA transcription factors interacting with glutathione metabolism and calmodulin. Our study provides valuable insights into the complex effects of SRB inoculation on MeHg dynamics in rice ecosystems, and may help to develop strategies to effectively control MeHg accumulation in rice grains.


Asunto(s)
Compuestos de Metilmercurio , Oryza , Rizosfera , Contaminantes del Suelo , Oryza/metabolismo , Oryza/microbiología , Oryza/crecimiento & desarrollo , Compuestos de Metilmercurio/metabolismo , Contaminantes del Suelo/metabolismo , Microbiología del Suelo , Raíces de Plantas/metabolismo , Raíces de Plantas/microbiología , Sulfatos/metabolismo , Bacterias/metabolismo , Bacterias Reductoras del Azufre/metabolismo , Biodegradación Ambiental
6.
Anal Methods ; 16(28): 4843-4855, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-38967499

RESUMEN

In this study, a phenothiazine-based ratiometric fluorescent probe PCHO was developed for highly sensitive and specific detection of hydroxylamine (HA). In the presence of HA, the aldehyde group on the PCHO molecule underwent a specific nucleophilic addition with HA to form an oxime group, accompanied by significant changes in fluorescence from green to blue. This detection mechanism was well supported by 1H NMR titration, HRMS and DFT calculations. The probe PCHO exhibited high sensitivity for HA detection (LOD was 0.19 µM) with a rapid response time (1 min), high selectivity and strong anti-interference performance. Surprisingly, the probe PCHO could selectively distinguish HA from its similar competing agents such as hydrazine and amines. Moreover, paper strips loaded with PCHO were prepared and combined with a smartphone to achieve point-of-care and visual detection of HA. The probe PCHO was further applied for the detection of HA in real water samples, achieving a recovery rate of 98.90% to 104.86% and an RSD of 0.86% to 2.44%, confirming the accuracy and reliability of the method. Additionally, the probe PCHO was used for imaging analysis of HA in living cells, providing a powerful visualization tool for exploring the physiological functions of HA in vivo.


Asunto(s)
Colorantes Fluorescentes , Hidroxilamina , Fenotiazinas , Colorantes Fluorescentes/química , Fenotiazinas/química , Humanos , Hidroxilamina/química , Límite de Detección , Espectrometría de Fluorescencia/métodos , Contaminantes Químicos del Agua/análisis , Células HeLa , Imagen Óptica/métodos , Agua/química
7.
Physiol Plant ; 176(2): e14205, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38439620

RESUMEN

Rhizobia and arbuscular mycorrhizal fungi (AMF) are symbiotic microorganisms important for plants grown in nutrient-deficient and heavy metal-contaminated soils. However, it remains unclear how plants respond to the coupled stress by heavy metal and nitrogen (N) deficiency under co-inoculation. Here, we investigated the synergistic effect of Mesorhizobium huakuii QD9 and Funneliformis mosseae on the response of black locust (Robinia pseudoacacia L.) grown in sand culture to cadmium (Cd) under N deficiency conditions. The results showed that single inoculation of AMF improved the growth and Cd resistance of black locust, co-inoculation improved the most. Compared to non-inoculated controls, co-inoculation mediated higher biomass and antioxidant enzyme activity, reduced oxidative stress, and promoted nodulation, mycorrhizal colonization, photosynthetic capacity, and N, P, Fe and Mg acquisition when exposed to Cd. This increase was significantly higher under N deficiency compared to N sufficiency. In addition, the uptake of Cd by co-inoculated black locust roots increased, but Cd translocation to the above-ground decreased under both N deficiency and sufficiency. Thus, in the tripartite symbiotic system, not merely metabolic processes but also Cd uptake increased under N deficiency. However, enhanced Cd detoxification in the roots and reduced allocation to the shoot likely prevent Cd toxicity and rather stimulated growth under these conditions.


Asunto(s)
Micorrizas , Rhizobium , Robinia , Cadmio/toxicidad , Arena , Antioxidantes
8.
Environ Pollut ; 345: 123456, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38307241

RESUMEN

The role of rhizobia in alleviating cadmium (Cd) stress in woody legumes is still unclear. Therefore, two types of black locust (Robinia pseudoacacia L.) with high and low Cd accumulation abilities were selected from 11 genotypes in China, and the effects of rhizobium (Mesorhizobium huakuii GP1T11) inoculation on the growth, CO2 and H2O gas exchange parameters, Cd accumulation, and the absorption of mineral elements of the high (SX) and low Cd-accumulator (HB) were compared. The results showed that rhizobium-inoculation significantly increased biomass, shoot Cd contents, Cd accumulation, root-to-shoot translocation factor (TF) and the absorption and accumulation of mineral elements in both SX and HB. Rhizobium-inoculation increased chlorophyll a and carotenoid contents, and the intercellular carbon dioxide concentrations in HB plants. Under Cd exposure, the high-accumulator SX exhibited a significant decrease in photosynthetic CO2 fixation (Pn) and an enhanced accumulation of Cd in leaves, but coped with Cd exposure by increasing chlorophyll synthesis, regulating stomatal aperture (Gs), controlling transpiration (Tr), and increasing the absorption and accumulation of mineral elements. In contrast, the low-accumulator HB was more sensitive to Cd exposure despite preferential accumulation of Cd in roots, with decreased chlorophyll and carotenoid contents, but significantly increased root biomass. Compared to the low-accumulator HB, non-inoculated Cd-exposed SX plants had higher chlorophyll contents, and rhizobium-inoculated Cd-exposed SX plants had higher Pn, Tr, and Gs as well as higher levels of P, K, Fe, Ca, Zn, and Cu. In conclusion, the high- and low-Cd-accumulator exhibited different physiological responses to Cd exposure. Overall, rhizobium-inoculation of black locust promoted the growth and heavy metal absorption, providing an effective strategy for the phytoremediation of heavy metal-contaminated soils by this woody legume.


Asunto(s)
Metales Pesados , Rhizobium , Robinia , Contaminantes del Suelo , Cadmio/toxicidad , Robinia/fisiología , Clorofila A , Dióxido de Carbono/análisis , Metales Pesados/farmacología , Clorofila , Minerales , Carotenoides , Biodegradación Ambiental , Contaminantes del Suelo/análisis
9.
Food Chem X ; 21: 101189, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38357376

RESUMEN

Flavor profiles of various Pyrus spp. cultivars exhibit significant variations, yet the underlying flavor-contributing factors remain elusive. In this investigation, a comprehensive approach encompassing metabolomics analysis, volatile fingerprint analysis, and descriptive sensory analysis was employed to elucidate the flavor disparities among Nanguoli, Korla fragrant pear, and Qiuyueli cultivars and uncover potential flavor contributor. The study comprehensively characterized the categories and concentrations of nonvolatile and volatile metabolites, and 925 metabolites were identified. Flavonoids and esters dominated the highest cumulative response, respectively. Utilizing weighted correlation network analysis (WGCNA), seven highly correlated modules were identified, yielding 407 pivotal metabolites. Further correlation analysis of the differential substances provided potential flavor constituents strongly associated with various sensory attributes; taste factors had a certain association with olfactory characteristics. Our findings demonstrated the manifestation of flavor was a result of the synergistic effect of various compounds; evaluation olfactory flavor necessitated a comprehensive consideration of taste substances.

10.
Plant Physiol Biochem ; 207: 108400, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38295526

RESUMEN

Lead (Pb) is a widespread highly toxic and persistent environmental pollutant. Plant leaves play a key role in accumulating atmospheric Pb, but its distribution in different cells and subcellular structures and the factors affecting it have been little studied. Here, Tillandsia usneoides, an indicator plant for atmospheric heavy metals, was treated with an aerosol generation device to analyze Pb contents in different cells (three types of cells in leaf surface scales, epidermal cells, mesophyll cells, vascular bundle cells), subcellular structures (cell wall, cell membrane, vacuoles, and organelles) and cell wall components (pectin, hemicellulose 1 and 2, and cellulose). Results show the different cells of T. usneoides leaves play distinct roles in the process of Pb retention. The outermost wing cells are structures that capture external pollutants, while mesophyll cells, as the aggregation site after material transport, ring cells, disc cells, epidermal cells, and vascular cells are material transporters. Pb was only detected in the cell wall and pectin, indicating the cell wall was the dominant subcellular structure for Pb retention, while pectin was the main component affecting Pb retention. FTIR analysis of cell wall components indicated the esterified carboxyl (CO) functional group in pectin may function in absorbing Pb. Pb entered leaf cells mainly in the form of low toxicity and activity to enhance its resistance.


Asunto(s)
Plomo , Hojas de la Planta , Tillandsia , Contaminantes Ambientales , Plomo/toxicidad , Plomo/metabolismo , Metales Pesados/metabolismo , Pectinas/metabolismo , Hojas de la Planta/metabolismo
11.
Technol Health Care ; 32(1): 143-150, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37248926

RESUMEN

BACKGROUND: Pressure injury (PI) is a local injury of the skin and/or soft tissue located at the bone caused by medical or other equipment and is common in long-term bedridden patients. OBJECTIVE: To investigate the clinical effect of Urgotul foam dressing in the treatment of stage 3 ∼ 4 PI and deep tissue PI. METHODS: A total of 38 patients with stage 3 ∼ 4 PI and deep tissue PI admitted to Jinan Central Hospital from January 2016 to December 2018 were selected and randomly divided into a control group (dressing change plus silver ion cream dressing) and an observation group (dressing change plus Urgotul Absorb non-border foam dressing), with 19 cases in each group. After 4 weeks of treatment, the pain intensity during dressing change and the treatment efficacy for PI wounds were compared between the two groups. RESULTS: There were no differences in gender (P= 0.740), age (P= 0.130), single wound area (P= 0.673), consultation department (P= 0.972), stage (P= 0.740), presence of undermining (P= 0.721), deep tissue PI (P= 0.721), and systemic antibiotic therapy (P= 1.000) between the two groups, which were comparable. The treatment effect of the observation group was better than that of the control group (P= 0.003), and the pain score of the observation group was lower than that of the control group (P< 0.001). CONCLUSION: Urgotul Absorb non-border foam dressing has a good effect in the treatment of stage 3 ∼ 4 PI and deep tissue PI and can relieve patients' pain, and is thus worth promoting.


Asunto(s)
Úlcera por Presión , Humanos , Úlcera por Presión/terapia , Vendajes , Resultado del Tratamiento , Infección de la Herida Quirúrgica , Dolor
12.
J Hazard Mater ; 465: 133236, 2024 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-38141298

RESUMEN

Biochar could reshape microbial communities, thereby altering methylmercury (MeHg) concentrations in rice rhizosphere and seeds. However, it remains unclear whether and how biochar amendment perturbs microbe-mediated MeHg production in mercury (Hg) contaminated paddy soil. Here, we used pinecone-derived biochar and its six modified biochars to reveal the disturbance. Results showed that selenium- and chitosan-modified biochar significantly reduced MeHg concentrations in the rhizosphere by 85.83% and 63.90%, thereby decreasing MeHg contents in seeds by 86.37% and 75.50%. The two modified bicohars increased the abundance of putative Hg-resistant microorganisms Bacillus, the dominant microbe in rhizosphere. These reductions about MeHg could be facilitated by biochar sensitive microbes such as Oxalobacteraceae and Subgroup_7. Pinecone-derived biochar increased MeHg concentration in rhizosphere but unimpacted MeHg content in seeds was observed. This biochar decreased the abundance in Bacillus but enhanced in putative Hg methylator Desulfovibrio. The increasing MeHg concentration in rhizosphere could be improved by biochar sensitive microbes such as Saccharimonadales and Clostridia. Network analysis showed that Saccharimonadales and Clostridia were the most prominent keystone taxa in rhizosphere, and the three biochars manipulated abundances of the microbes related to MeHg production in rhizosphere by those biochar sensitive microbes. Therefore, selenium- and chitosan-modified biochar could reduce soil MeHg production by these microorganisms, and is helpful in controlling MeHg contamination in rice.


Asunto(s)
Carbón Orgánico , Quitosano , Mercurio , Compuestos de Metilmercurio , Oryza , Selenio , Contaminantes del Suelo , Compuestos de Metilmercurio/análisis , Contaminantes del Suelo/análisis , Mercurio/análisis , Suelo
13.
J Environ Manage ; 344: 118640, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37478720

RESUMEN

Anaerobic digestion (AD) with municipal wastewater contained heavy metal mercury (Hg) highly affects the utilization of activated sludge, and poses severe threat to the health of human beings. However, the biogeochemical transformation of Hg during AD remains unclear. Here, we investigated the biogeochemical transformation and environmental characteristics of Hg and the variations of dominant microbes during AD. The results showed that Hg(II) methylation is dominant in the early stage of AD, while methylmercury (MeHg) demethylation dominates in the later stage. Dissolved total Hg (DTHg) in the effluent sludge decreased with time, while THg levels enhanced to varying degrees at the final stage. Sulfate significant inhibits MeHg formation, reduces bioavailability of Hg(II) by microbes and thus inhibits Hg(II) methylation. Microbial community analysis reveals that strains in Methanosarcina and Aminobacterium from the class of Methanomicrobia, rather than Deltaproteobacteria, may be directly related to Hg(II) methylation and MeHg demethylation. Overall, this research provide insights into the biogeochemical transformation of Hg in the anaerobic digestion of municipal wastewater treatment. This work is beneficial for scientific treatment of municipal wastewater and effluent sludge, thus reducing the risk of MeHg to human beings.


Asunto(s)
Mercurio , Compuestos de Metilmercurio , Humanos , Mercurio/análisis , Aguas Residuales , Aguas del Alcantarillado , Anaerobiosis
14.
Talanta ; 265: 124800, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37392707

RESUMEN

Realizing accurate pesticide multiresidue detection in a complex matrix is still a challenge for point-of-care sensing methods. Herein, we introduced background-free and multicolor aptasensors based on bioorthogonal surface-enhanced Raman scattering (SERS) tags and successfully applied them to analyze multiple pesticide residues. The excellent anti-interference and multiplex capability are due to the application of three bioorthogonal Raman reporters involving 4-ethenylbenzenamine (4-EBZM), Prussian blue (PB) and 2-amino-4-cyanopyridine (AMCP) with alkynyl and cyano groups, which demonstrated apparent Raman shift peaks at 1993 cm-1, 2160 cm-1, and 2264 cm-1 in the biologically Raman-silent region, respectively. Ultimately, a detection range of 1-50 nM for acetamiprid, atrazine and malathion was achieved with detection limits of 0.39, 0.57 and 0.16 nM, respectively. The developed aptasensors were successfully used to determine pesticide residues in real samples. These proposed multicolor aptasensors offer an effective strategy for pesticide multiresidue detection with advantages of anti-interference, high specificity and high sensitivity.

15.
Environ Int ; 178: 108066, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37399771

RESUMEN

The plant microbiota can affect plant health and fitness by promoting methylmercury (MeHg) production in paddy soil. Although most well-known mercury (Hg) methylators are observed in the soil, it remains unclear how rice rhizosphere assemblages alter MeHg production. Here, we used network analyses of microbial diversity to identify bulk soil (BS), rhizosphere (RS) and root bacterial networks during rice development at Hg gradients. Hg gradients greatly impacted the niche-sharing of taxa significantly relating to MeHg/THg, while plant development had little effect. In RS networks, Hg gradients increased the proportion of MeHg-related nodes in total nodes from 37.88% to 45.76%, but plant development enhanced from 48.59% to 50.41%. The module hub and connector in RS networks included taxa positively (Nitrososphaeracea, Vicinamibacteraceae and Oxalobacteraceae) and negatively (Gracilibacteraceae) correlating with MeHg/THg at the blooming stage. In BS networks, Deinococcaceae and Paludibacteraceae were positively related to MeHg/THg, and constituted the connector at the reviving stage and the module hub at the blooming stage. Soil with an Hg concentration of 30 mg kg-1 increased the complexity and connectivity of root microbial networks, although microbial community structure in roots was less affected by Hg gradients and plant development. As most frequent connector in root microbial networks, Desulfovibrionaceae did not significantly correlate with MeHg/THg, but was likely to play an important role in the response to Hg stress.


Asunto(s)
Mercurio , Compuestos de Metilmercurio , Oryza , Contaminantes del Suelo , Compuestos de Metilmercurio/análisis , Oryza/química , Suelo/química , Monitoreo del Ambiente , Contaminantes del Suelo/análisis , Mercurio/análisis , Bacterias
16.
Molecules ; 28(12)2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37375349

RESUMEN

To comprehensively understand the volatile compounds and assess the aroma profiles of different types of Pyrus ussuriensis Maxim. Anli, Dongmili, Huagai, Jianbali, Jingbaili, Jinxiangshui, and Nanguoli were detected via headspace solid phase microextraction (HS-SPME) coupled with two-dimensional gas chromatography/time-of-flight mass spectrometry (GC×GC-TOFMS). The aroma composition, total aroma content, proportion and number of different aroma types, and the relative quantities of each compound were analyzed and evaluated. The results showed that 174 volatile aroma compounds were detected in various cultivars, mainly including esters, alcohols, aldehydes, and alkenes: Jinxiangshui had the highest total aroma content at 2825.59 ng/g; and Nanguoli had the highest number of aroma species detected at 108. The aroma composition and content varied among pear varieties, and the pears could be divided into three groups based on principal component analysis. Twenty-four kinds of aroma scents were detected; among them, fruit and aliphatic were the main fragrance types. The proportions of aroma types also varied among different varieties, visually and quantitatively displaying changes of the whole aroma of the different varieties of pears brought by the changes in aroma composition. This study contributes to further research on volatile compound analysis, and provides useful data for the improvement of fruit sensory quality and breeding work.


Asunto(s)
Odorantes , Pyrus , Compuestos Orgánicos Volátiles , Odorantes/análisis , Fitomejoramiento , Pyrus/química , Pyrus/genética , Microextracción en Fase Sólida/métodos , Compuestos Orgánicos Volátiles/análisis , Cromatografía de Gases y Espectrometría de Masas , China
17.
Sci Total Environ ; 892: 164597, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37271400

RESUMEN

Anthropogenic activities such as mining, smelting, and overapplication of fertilizers contribute to introducing cadmium (Cd) into the biosphere. Cd accumulation in edible plants leads to phytotoxicity and reduces biomass formation and food production, posing a significant threat to global food security. Nitric oxide (NO) is a highly active gaseous signalling molecule involved in regulating plant responses to Cd stress. These responses include the protective role of NO in enhancing plant resistance to Cd exposure via activating the antioxidant defense system, maintaining intracellular redox homeostasis, and initiating the expression of genes relevant to stress defense. However, NO exacerbates Cd toxicity by promoting Cd uptake and accelerating programmed cell death in plants. These contradictory responses render the role of NO in regulating plant performance under Cd exposure highly controversial. To better understand the mechanisms responsible for the dual role of NO, we summarized the current knowledge on (1) the processes of Cd accumulation and detoxification in plants, (2) the pathways of NO synthesis and metabolism under Cd stress, and (3) the function of NO in regulating plant responses to Cd stress at the physiological and molecular levels. From this literature review, the processes responsible for the dual role of NO in plant responses to Cd exposure were deduced, and topics for future studies on the mechanisms of NO-mediated regulation of Cd detoxification in plants were identified.


Asunto(s)
Cadmio , Óxido Nítrico , Cadmio/toxicidad , Cadmio/metabolismo , Óxido Nítrico/metabolismo , Plantas/metabolismo , Antioxidantes/metabolismo , Oxidación-Reducción
18.
Anal Chim Acta ; 1268: 341398, 2023 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-37268344

RESUMEN

In this study, we propose an interference-free SERS-based aptasensor for trace detection of chlorpyrifos (CPF) in real samples. In the aptasensor, gold nanoparticles coated with Prussian blue (Au@PB NPs) were employed as SERS tags to provide a sole and intense Raman emission at 2160 cm-1, which could avoid overlapping with the Raman spectrum of the real samples in 600-1800 cm-1 to improve the anti-matrix effect ability of the aptasensor. Under the optimum conditions, this aptasensor displayed a linear response for CPF detection in the range of 0.1-316 ng mL-1 with a low detection limit of 0.066 ng mL-1. In addition, the prepared aptasensor shows excellent application to determine CPF in cucumber, pear and river water samples. The recovery rates were highly correlated with high-performance liquid chromatography‒mass spectrometry (HPLC‒MS/MS). This aptasensor shows interference-free, specific and sensitive detection for CPF and offers an effective strategy for other pesticide residue detection.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Cloropirifos , Nanopartículas del Metal , Cloropirifos/análisis , Oro/química , Espectrometría de Masas en Tándem , Nanopartículas del Metal/química , Espectrometría Raman/métodos , Límite de Detección , Aptámeros de Nucleótidos/química
19.
Molecules ; 28(9)2023 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-37175308

RESUMEN

A novel dual-response fluorescence probe (XBT-CN) was developed by using a fluorescence priming strategy for quantitative monitoring and visualization of hydrazine (N2H4) and hypochlorite (ClO-). With the addition of N2H4/ClO-, the cleavage reaction of C=C bond initiated by N2H4/ClO- was transformed into corresponding hydrazone and aldehyde derivatives, inducing the probe XBT-CN appeared a fluorescence "off-on" response, which was verified by DFT calculation. HRMS spectra were also conducted to confirm the sensitive mechanism of XBT-CN to N2H4 and ClO-. The probe XBT-CN had an obvious fluorescence response to N2H4 and ClO-, which caused a significant color change in unprotected eyes. In addition, the detection limits of XBT-CN for N2H4 and ClO- were 27 nM and 34 nM, respectively. Interference tests showed that other competitive analytes could hardly interfere with the detection of N2H4 and ClO- in a complex environment. In order to realize the point-of-care detection of N2H4 and ClO-, an XBT-CN@hydrogel test kit combined with a portable smartphone was developed. Furthermore, the portable test kit has been applied to the detection of N2H4 and ClO- in a real-world environment and food samples, and a series of good results have been achieved. Attractively, we demonstrated that XBT-CN@hydrogel was successfully applied as an encryption ink in the field of information security. Finally, the probe can also be used to monitor and distinguish N2H4 and ClO- in living cells, exhibiting excellent biocompatibility and low cytotoxicity.


Asunto(s)
Hidrogeles , Ácido Hipocloroso , Ácido Hipocloroso/química , Sistemas de Atención de Punto , Espectrometría de Fluorescencia/métodos , Colorantes Fluorescentes/química , Hidrazinas
20.
J Hazard Mater ; 445: 130589, 2023 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-37055993

RESUMEN

Over 3000 mercury (Hg)-contaminated sites worldwide contain liquid metallic Hg [Hg(0)l] representing a continuous source of elemental Hg(0) in the environment through volatilization and solubilization in water. Currently, there are few effective treatment technologies available to remove or sequester Hg(0)l in situ. We investigated sonochemical treatments coupled with complexing agents, polysulfide and sulfide, in oxidizing Hg(0)l and stabilizing Hg in water, soil and quartz sand. Results indicate that sonication is highly effective in breaking up and oxidizing liquid Hg(0)l beads via acoustic cavitation, particularly in the presence of polysulfide. Without complexing agents, sonication caused only minor oxidation of Hg(0)l but increased headspace gaseous Hg(0)g and dissolved Hg(0)aq in water. However, the presence of polysulfide essentially stopped Hg(0) volatilization and solubilization. As a charged polymer, polysulfide was more effective than sulfide in oxidizing Hg(0)l and subsequently stabilizing the precipitated metacinnabar (ß-HgS) nanocrystals. Sonochemical treatments with sulfide yielded incomplete oxidation of Hg(0)l, likely resulting from the formation of HgS coatings on the dispersed µm-size Hg(0)l bead surfaces. Sonication with polysulfide also resulted in rapid oxidation of Hg(0)l and precipitation of HgS in quartz sand and in the Hg(0)l-contaminated soil. This research indicates that sonochemical treatment with polysulfide could be an effective means in rapidly converting Hg(0)l to insoluble HgS precipitates in water and sediments, thereby preventing its further emission and release to the environment. We suggest that future studies are performed to confirm its technical feasibility and treatment efficacy for remediation applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA