RESUMEN
BACKGROUND: Hepatocellular carcinoma (HCC) is a global popular malignant tumor, which is difficult to cure, and the current treatment is limited. AIM: To analyze the impacts of stress granule (SG) genes on overall survival (OS), survival time, and prognosis in HCC. METHODS: The combined The Cancer Genome Atlas-Liver Hepatocellular Carcinoma (TCGA-LIHC), GSE25097, and GSE36376 datasets were utilized to obtain genetic and clinical information. Optimal hub gene numbers and corresponding coefficients were determined using the Least absolute shrinkage and selection operator model approach, and genes for constructing risk scores and corresponding correlation coefficients were calculated according to multivariate Cox regression, respectively. The prognostic model's receiver operating characteristic (ROC) curve was produced and plotted utilizing the time ROC software package. Nomogram models were constructed to predict the outcomes at 1, 3, and 5-year OS prognostications with good prediction accuracy. RESULTS: We identified seven SG genes (DDX1, DKC1, BICC1, HNRNPUL1, CNOT6, DYRK3, CCDC124) having a prognostic significance and developed a risk score model. The findings of Kaplan-Meier analysis indicated that the group with a high risk exhibited significantly reduced OS in comparison with those of the low-risk group (P < 0.001). The nomogram model's findings indicate a significant enhancement in the accuracy of OS prediction for individuals with HCC in the TCGA-HCC cohort. Gene Ontology and Gene Set Enrichment Analysis suggested that these SGs might be involved in the cell cycle, RNA editing, and other biological processes. CONCLUSION: Based on the impact of SG genes on HCC prognosis, in the future, it will be used as a biomarker as well as a unique therapeutic target for the identification and treatment of HCC.
RESUMEN
OBJECTIVE: The purpose of this work was to check the connection between parameters of lipid profile and body mass index (BMI) in relation to the occurrence of acute pancreatitis within a sample of adults from northern China. METHODOLOGY: A total of 123,214 participants from the Kailuan Group were incorporated into this prospective study. The subjects were categorized into quartiles on the basis of their initial levels of triglyceride (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), and high-density lipoprotein cholesterol (HDL-C). On the basis of BMI classification, the individuals in the study were divided into three distinct groups: normal weight, overweight, and obese. The data were analyzed to explore the correlation between lipid profile and BMI with acute pancreatitis. RESULTS: Over a period of 12.59 ± 0.98 years, during the median follow-up duration, a total of 410 new patients with acute pancreatitis were recorded. The occurrence rate and total occurrence of acute pancreatitis demonstrated an upward trend in correlation with elevated levels of TG, TC, and BMI. Following adjustment for multiple variables, it was observed that individuals in the fourth quartile of TG and TC levels demonstrated the highest likelihood of developing acute pancreatitis. Furthermore, our analysis revealed that a proportion of 19.29% of the correlation between BMI and the likelihood of experiencing acute pancreatitis can be attributed to the influence of elevated TG levels, whereas 12.69% of the association was mediated by higher TC. CONCLUSIONS: We found that hypertriglyceridemia, hypercholesterolemia, and obesity were risk factors for acute pancreatitis, especially in young and middle-aged men.TG and TC were the mediating factors between BMI and the risk of acute pancreatitis.
Asunto(s)
Índice de Masa Corporal , Hipercolesterolemia , Hipertrigliceridemia , Pancreatitis , Humanos , Hipertrigliceridemia/epidemiología , Hipertrigliceridemia/sangre , Hipertrigliceridemia/complicaciones , Masculino , Pancreatitis/epidemiología , Pancreatitis/sangre , Pancreatitis/etiología , Pancreatitis/diagnóstico , Femenino , Persona de Mediana Edad , Hipercolesterolemia/epidemiología , Hipercolesterolemia/sangre , Adulto , Estudios Prospectivos , Factores de Riesgo , China/epidemiología , Enfermedad Aguda , Triglicéridos/sangre , Obesidad/epidemiología , Obesidad/complicaciones , Obesidad/sangre , AncianoRESUMEN
Light-induced phase segregation, particularly when incorporating bromine to widen the bandgap, presents significant challenges to the stability and commercialization of perovskite solar cells. This study explores the influence of hole transport layers, specifically poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine (PTAA) and [4-(3,6-dimethyl-9H-carbazol-9-yl)butyl]phosphonic acid (Me-4PACz), on the dynamics of phase segregation. Through detailed characterization of the buried interface, we demonstrate that Me-4PACz enhances perovskite photostability, surpassing the performance of PTAA. Nanoscale analyses using in situ Kelvin probe force microscopy and quantitative nanomechanical mapping techniques elucidate defect distribution at the buried interface during phase segregation, highlighting the critical role of substrate wettability in perovskite growth and interface integrity. The integration of these characterization techniques provides a thorough understanding of the impact of the buried bottom interface on perovskite growth and phase segregation.
RESUMEN
Mitochondria are critical for proper organ function and mechanisms to promote mitochondrial health during regeneration would benefit tissue homeostasis. We report that during liver regeneration, proliferation is suppressed in electron transport chain (ETC)-dysfunctional hepatocytes due to an inability to generate acetyl-CoA from peripheral fatty acids through mitochondrial ß-oxidation. Alternative modes for acetyl-CoA production from pyruvate or acetate are suppressed in the setting of ETC dysfunction. This metabolic inflexibility forces a dependence on ETC-functional mitochondria and restoring acetyl-CoA production from pyruvate is sufficient to allow ETC-dysfunctional hepatocytes to proliferate. We propose that metabolic inflexibility within hepatocytes can be advantageous by limiting the expansion of ETC-dysfunctional cells.
Asunto(s)
Acetilcoenzima A , Hepatocitos , Regeneración Hepática , Mitocondrias Hepáticas , Ácido Pirúvico , Animales , Hepatocitos/metabolismo , Acetilcoenzima A/metabolismo , Ratones , Ácido Pirúvico/metabolismo , Mitocondrias Hepáticas/metabolismo , Oxidación-Reducción , Proliferación Celular , Ácidos Grasos/metabolismo , Hígado/metabolismo , Transporte de Electrón , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , MasculinoRESUMEN
Identifying the spatiotemporal distributions and phenotypic characteristics of understory saplings is beneficial in exploring the internal mechanisms of plant regeneration and providing technical assistances for continues cover forest management. However, it is challenging to detect the understory saplings using 2-dimensional (2D) spectral information produced by conventional optical remotely sensed data. This study proposed an automatic method to detect the regenerated understory saplings based on the 3D structural information from aerial laser scanning (ALS) data. By delineating individual tree crown using the improved spectral clustering algorithm, we successfully removed the overstory canopy and associated trunk points. Then, individual understory saplings were segmented using an adaptive-mean-shift-based clustering algorithm. This method was tested in an experimental forest farm of North China. Our results showed that the detection rates of understory saplings ranged from 94.41% to 152.78%, and the matching rates increased from 62.59% to 95.65% as canopy closure went down. The ALS-based sapling heights well captured the variations of field measurements [R2 = 0.71, N = 3,241, root mean square error (RMSE) = 0.26 m, P < 0.01] and terrestrial laser scanning (TLS)-based measurements (R2 = 0.78, N =443, RMSE = 0.23 m, P < 0.01). The ALS-based sapling crown width was comparable with TLS-based measurements (R2 = 0.64, N = 443, RMSE = 0.24 m). This study provides a solution for the quantification of understory saplings, which can be used to improve forest ecosystem resilence through regulating the dynamics of forest gaps to better utilize light resources.
RESUMEN
The nature of activation signals is essential in determining T cell subset differentiation; however, the features that determine T cell subset preference acquired during intrathymic development remain elusive. Here we show that naive CD4+ T cells generated in the mouse thymic microenvironment lacking Scd1, encoding the enzyme catalyzing oleic acid (OA) production, exhibit enhanced regulatory T (Treg) cell differentiation and attenuated development of experimental autoimmune encephalomyelitis. Scd1 deletion in K14+ thymic epithelia recapitulated the enhanced Treg cell differentiation phenotype of Scd1-deficient mice. The dearth of OA permitted DOT1L to increase H3K79me2 levels at the Atp2a2 locus of thymocytes at the DN2-DN3 transition stage. Such epigenetic modification persisted in naive CD4+ T cells and facilitated Atp2a2 expression. Upon T cell receptor activation, ATP2A2 enhanced the activity of the calcium-NFAT1-Foxp3 axis to promote naive CD4+ T cells to differentiate into Treg cells. Therefore, OA availability is critical for preprogramming thymocytes with Treg cell differentiation propensities in the periphery.
Asunto(s)
Ácido Oléico , Timocitos , Animales , Ratones , Ácido Oléico/metabolismo , Timo , Linfocitos T Reguladores , Diferenciación Celular , Factores de Transcripción Forkhead/genéticaRESUMEN
OBJECTIVE: To investigate the correlation between anthropometric indexes [cardiometabolic index (CMI), lipid accumulation products (LAP), waist triglyceride index (WTI), and body mass index (BMI)] and acute pancreatitis (AP) in a Chinese adult population. METHODOLOGY: The present investigation consisted of a prospective group including 117,326 subjects who were enrolled in the Kailuan investigation. The individuals were categorized into quartiles based on their baseline levels of CMI, LAP, and WIT. BMI was categorized into three distinctive groups: normal weight group (BMI < 24 kg/m2), overweight group (BMI 24-28 kg /m2), and obesity group (BMI ≥ 28 kg/m2). The data were subjected to analysis in order to investigate the correlation between these anthropometric indexes and the incidence of AP. Cox regression models were employed to assess the relative risk of AP while accounting for known risk factors through appropriate adjustments. OUTCOMES: Over the course of a median follow-up duration of 12.59 ± 0.98 years, we documented 401 incident AP cases. Incidence density and cumulative incidence rates of AP increased with the increase of CMI, LAP, and WTI. After multivariate adjustment, the fourth quartile of CMI, LAP, and WTI exhibited the greatest risk of AP [CMI: hazard ratio (HR) 1.93, 95% confidential interval (CI) (1.45-2.57); LAP: HR 2.00, 95% CI(1.49-2.68); WTI: HR 2.13,95% CI (1.59-2.83)]. In comparison to the normal weight group, the obesity group (BMI ≥ 28 kg/m2) had an elevated risk of AP (HR = 1.58, 95% CI: 1.21-2.05). Furthermore, the incremental effect of BMI combined with CMI on the prognostic value of AP was greater than that of BMI alone (the C statistics demonstrated a result of 0.607 versus 0.546; the integrated discrimination improvement revealed a result of 0.321%; net reclassification improvement was 1.975%). CONCLUSION: We found that CMI, LAP, and WTI were positively and independently connected to the risk of AP. Additionally, CMI demonstrates a superior prognostic capacity than other indexes in anticipating AP.
Asunto(s)
Enfermedades Cardiovasculares , Producto de la Acumulación de Lípidos , Pancreatitis , Humanos , Adulto , Triglicéridos , Estudios Prospectivos , Enfermedad Aguda , Pancreatitis/epidemiología , Obesidad/epidemiología , Factores de Riesgo , Índice de Masa Corporal , Enfermedades Cardiovasculares/epidemiología , China/epidemiologíaRESUMEN
The importance of classical CD8+ T cells in tumor eradication is well acknowledged. However, the anti-tumor activity of MHC (major histocompatibility complex) Ib-restricted CD8+ T (Ib-CD8+ T) cells remains obscure. Here, we show that CX3CR1-expressing Ib-CD8+ T cells (Ib-restricted CD8+ T cells) highly express cytotoxic factors, austerely resist exhaustion, and effectively eliminate various tumors. These Ib-CD8+ T cells can be primed by MHC Ia (MHC class Ia molecules) expressed on various cell types for optimal activation in a Tbet-dependent manner. Importantly, MHC Ia does not allogeneically activate Ib-CD8+ T cells, rather, sensitizes these cells for T cell receptor activation. Such effects were observed when MHC Ia+ cells were administered to tumor-bearing Kb-/-Db-/-mice. A similar population of tumoricidal CX3CR1+CD8+ T cells was identified in wild-type mice and melanoma patients. Adoptive transfer of Ib-CD8+ T cells to wild-type mice inhibited tumor progression without damaging normal tissues. Taken together, we demonstrate that MHC class Ia can prime Ib-CD8+ T cells for robust tumoricidal activities.
Asunto(s)
Linfocitos T CD8-positivos , Antígenos de Histocompatibilidad Clase I , Humanos , Ratones , Animales , Antígenos de Histocompatibilidad Clase I/genética , Antígenos de Histocompatibilidad Clase I/metabolismo , Antígenos H-2 , Antígenos de Histocompatibilidad/metabolismo , Ratones Endogámicos C57BLRESUMEN
Osteolectin is a recently identified osteogenic growth factor that binds to Integrin α11 (encoded by Itga11), promoting Wnt pathway activation and osteogenic differentiation by bone marrow stromal cells. While Osteolectin and Itga11 are not required for the formation of the skeleton during fetal development, they are required for the maintenance of adult bone mass. Genome-wide association studies in humans reported a single-nucleotide variant (rs182722517) 16 kb downstream of Osteolectin associated with reduced height and plasma Osteolectin levels. In this study, we tested whether Osteolectin promotes bone elongation and found that Osteolectin-deficient mice have shorter bones than those of sex-matched littermate controls. Integrin α11 deficiency in limb mesenchymal progenitors or chondrocytes reduced growth plate chondrocyte proliferation and bone elongation. Recombinant Osteolectin injections increased femur length in juvenile mice. Human bone marrow stromal cells edited to contain the rs182722517 variant produced less Osteolectin and underwent less osteogenic differentiation than that of control cells. These studies identify Osteolectin/Integrin α11 as a regulator of bone elongation and body length in mice and humans.
Asunto(s)
Condrocitos , Osteogénesis , Adulto , Ratones , Animales , Humanos , Condrocitos/metabolismo , Osteogénesis/fisiología , Placa de Crecimiento , Estudio de Asociación del Genoma Completo , Huesos , Diferenciación Celular , Integrinas/metabolismo , Proliferación CelularRESUMEN
Mammalian hematopoietic stem cells (HSCs) colonize the bone marrow during late fetal development, and this becomes the major site of hematopoiesis after birth. However, little is known about the early postnatal bone marrow niche. We performed single-cell RNA sequencing of mouse bone marrow stromal cells at 4 days, 14 days, and 8 weeks after birth. Leptin-receptor-expressing (LepR+) stromal cells and endothelial cells increased in frequency during this period and changed their properties. At all postnatal stages, LepR+ cells and endothelial cells expressed the highest stem cell factor (Scf) levels in the bone marrow. LepR+ cells expressed the highest Cxcl12 levels. In early postnatal bone marrow, SCF from LepR+/Prx1+ stromal cells promoted myeloid and erythroid progenitor maintenance, while SCF from endothelial cells promoted HSC maintenance. Membrane-bound SCF in endothelial cells contributed to HSC maintenance. LepR+ cells and endothelial cells are thus important niche components in early postnatal bone marrow.
Asunto(s)
Médula Ósea , Receptores de Leptina , Animales , Ratones , Células de la Médula Ósea , Células Endoteliales , Hematopoyesis , Células Madre Hematopoyéticas , Mamíferos , Receptores de Leptina/genética , Factor de Células Madre , Nicho de Células MadreRESUMEN
Niche for stem cells profoundly influences their maintenance and fate during tissue homeostasis and pathological disorders; however, the underlying mechanisms and tissue-specific features remain poorly understood. Here, it is reported that fatty acid desaturation catabolized by stearoyl-coenzyme A desaturase 1 (SCD1) regulates hair follicle stem cells (HFSCs) and hair growth by maintaining the bulge, niche for HFSCs. Scd1 deletion in mice results in abnormal hair growth, an effect exerted directly on keratin K14+ keratinocytes rather than on HFSCs. Mechanistically, Scd1 deficiency impairs the level of integrin α6ß4 complex and thus the assembly of hemidesmosomes (HDs). The disruption of HDs allows the aberrant activation of focal adhesion kinase and PI3K in K14+ keratinocytes and subsequently their differentiation and proliferation. The overgrowth of basal keratinocytes results in downward extension of the outer root sheath and interruption of bulge formation. Then, inhibition of PI3K signaling in Scd1-/- mice normalizes the bulge, HFSCs, and hair growth. Additionally, supplementation of oleic acid to Scd1-/- mice reestablishes HDs and the homeostasis of bulge niche, and restores hair growth. Thus, SCD1 is critical in regulating hair growth through stabilizing HDs in basal keratinocytes and thus sustaining bulge for HFSC residence and periodic activity.
Asunto(s)
Hemidesmosomas , Fosfatidilinositol 3-Quinasas , Ratones , Animales , Queratinocitos , Homeostasis , Estearoil-CoA DesaturasaRESUMEN
Mesenchymal stromal cells (MSCs) function as a formidable regulator of inflammation and tissue homeostasis and expanded MSCs are shown to be effective in treating various inflammatory diseases. Their therapeutic effects require the existence of certain inflammatory cytokines. However, in the absence of sufficient proinflammatory stimuli or in the presence of anti-inflammatory medications, MSCs are animated to promote immune responses and unable to alleviate inflammatory disorders. In this study, it is demonstrated that steroid co-administration interferes the efficacy of MSCs in treating acute graft-versus-host disease (aGvHD). Molecular analysis reveals that vascular endothelial growth factor C (VEGF-C) is highly induced in MSCs by steroids and TNFα and VEGF-C in turn promotes CD8+ T cell response. This immune promoting effect is abolished by blockade or specific genetic ablation of VEGFR3 in CD8+ T cells. Additionally, administration of VEGF-C alone exacerbates aGvHD progression through eliciting more vigorous CD8+ T cell activation and proliferation. Further studies demonstrate that VEGF-C augments the PI3K/AKT signaling process and the expression of downstream genes, such as Cyclin D1. Thus, the data demonstrate that steroids can reverse the immunosuppressive effect of MSCs via promoting VEGF-C-augmented CD8+ T cell response and provide novel information for designing efficacious MSC-based therapies.
Asunto(s)
Linfocitos T CD8-positivos/metabolismo , Proliferación Celular/efectos de los fármacos , Enfermedad Injerto contra Huésped/tratamiento farmacológico , Células Madre Mesenquimatosas/efectos de los fármacos , Esteroides/farmacología , Factor C de Crecimiento Endotelial Vascular/metabolismo , Animales , Modelos Animales de Enfermedad , Humanos , Células Madre Mesenquimatosas/metabolismo , Ratones , Ratones Endogámicos C57BL , Esteroides/metabolismoRESUMEN
Efficient, high-precision, and automatic measurement of tunnel structural changes is the key to ensuring the safe operation of subways. Conventional manual, static, and discrete measurements cannot meet the requirements of rapid and full-section detection in subway construction and operation. Mobile laser scanning technology is the primary method for tunnel detection. Herein, we propose a method to calculate shield tunnel displacements of a full cross-section tunnel. The point cloud data, obtained via a mobile tunnel deformation detection system, were fitted, projected, and interpolated to generate an orthophoto image. Combined with the cumulative characteristics of the tunnel gray gradient, the longitudinal ring seam of the tunnel was identified, while the Canny algorithm and Hough line detection algorithm identified the transverse seam. The symmetrical vertical foot method and cross-section superposition analysis were used to calculate the circumferential and radial displacements, respectively. The proposed displacement calculation method achieves automatic recognition of a ring seam, reduces human-computer interaction, and is fast, intelligent, and accurate. Furthermore, the description of the tunnel deformation location and deformation amount is more quantitative and specific. These results confirm the significance of shield tunnel displacement monitoring based on mobile monitoring systems in tunnel disease monitoring.
Asunto(s)
Algoritmos , Computadores , Electrocardiografía , HumanosRESUMEN
We previously described a new osteogenic growth factor, osteolectin/Clec11a, which is required for the maintenance of skeletal bone mass during adulthood. Osteolectin binds to Integrin α11 (Itga11), promoting Wnt pathway activation and osteogenic differentiation by leptin receptor+ (LepR+) stromal cells in the bone marrow. Parathyroid hormone (PTH) and sclerostin inhibitor (SOSTi) are bone anabolic agents that are administered to patients with osteoporosis. Here we tested whether osteolectin mediates the effects of PTH or SOSTi on bone formation. We discovered that PTH promoted Osteolectin expression by bone marrow stromal cells within hours of administration and that PTH treatment increased serum osteolectin levels in mice and humans. Osteolectin deficiency in mice attenuated Wnt pathway activation by PTH in bone marrow stromal cells and reduced the osteogenic response to PTH in vitro and in vivo. In contrast, SOSTi did not affect serum osteolectin levels and osteolectin was not required for SOSTi-induced bone formation. Combined administration of osteolectin and PTH, but not osteolectin and SOSTi, additively increased bone volume. PTH thus promotes osteolectin expression and osteolectin mediates part of the effect of PTH on bone formation.
Asunto(s)
Factores de Crecimiento de Célula Hematopoyética/metabolismo , Lectinas Tipo C/metabolismo , Osteogénesis/efectos de los fármacos , Hormona Paratiroidea/farmacología , Proteínas Adaptadoras Transductoras de Señales/antagonistas & inhibidores , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Hueso Esponjoso/efectos de los fármacos , Hueso Esponjoso/patología , Femenino , Factores de Crecimiento de Célula Hematopoyética/sangre , Factores de Crecimiento de Célula Hematopoyética/deficiencia , Humanos , Lectinas Tipo C/sangre , Lectinas Tipo C/deficiencia , Ratones Endogámicos C57BL , Tamaño de los Órganos/efectos de los fármacos , Osteoporosis/sangre , Premenopausia/sangre , Vía de Señalización Wnt/efectos de los fármacosRESUMEN
Stromal cells in adult bone marrow that express leptin receptor (LEPR) are a critical source of growth factors, including stem cell factor (SCF), for the maintenance of haematopoietic stem cells and early restricted progenitors1-6. LEPR+ cells are heterogeneous, including skeletal stem cells and osteogenic and adipogenic progenitors7-12, although few markers have been available to distinguish these subsets or to compare their functions. Here we show that expression of an osteogenic growth factor, osteolectin13,14, distinguishes peri-arteriolar LEPR+ cells poised to undergo osteogenesis from peri-sinusoidal LEPR+ cells poised to undergo adipogenesis (but retaining osteogenic potential). Peri-arteriolar LEPR+osteolectin+ cells are rapidly dividing, short-lived osteogenic progenitors that increase in number after fracture and are depleted during ageing. Deletion of Scf from adult osteolectin+ cells did not affect the maintenance of haematopoietic stem cells or most restricted progenitors but depleted common lymphoid progenitors, impairing lymphopoiesis, bacterial clearance, and survival after acute bacterial infection. Peri-arteriolar osteolectin+ cell maintenance required mechanical stimulation. Voluntary running increased, whereas hindlimb unloading decreased, the frequencies of peri-arteriolar osteolectin+ cells and common lymphoid progenitors. Deletion of the mechanosensitive ion channel PIEZO1 from osteolectin+ cells depleted osteolectin+ cells and common lymphoid progenitors. These results show that a peri-arteriolar niche for osteogenesis and lymphopoiesis in bone marrow is maintained by mechanical stimulation and depleted during ageing.
Asunto(s)
Arteriolas , Linfopoyesis , Osteogénesis , Nicho de Células Madre , Tejido Adiposo/citología , Envejecimiento , Animales , Células de la Médula Ósea/citología , Huesos/citología , Femenino , Factores de Crecimiento de Célula Hematopoyética/metabolismo , Lectinas Tipo C/metabolismo , Linfocitos/citología , Masculino , Ratones , Receptores de Leptina/metabolismo , Factor de Células Madre , Células del Estroma/citologíaRESUMEN
Metabolic traits of macrophages can be rewired by insulin-like growth factor 2 (IGF2); however, how IGF2 modulates macrophage cellular dynamics and functionality remains unclear. We demonstrate that IGF2 exhibits dual and opposing roles in controlling inflammatory phenotypes in macrophages by regulating glucose metabolism, relying on the dominant activation of the IGF2 receptor (IGF2R) by low-dose IGF2 (L-IGF2) and IGF1R by high-dose IGF2. IGF2R activation leads to proton rechanneling to the mitochondrial intermembrane space and enables sustained oxidative phosphorylation. Mechanistically, L-IGF2 induces nucleus translocation of IGF2R that promotes Dnmt3a-mediated DNA methylation by activating GSK3α/ß and subsequently impairs expression of vacuolar-type H+-ATPase (v-ATPase). This sequestrated assembly of v-ATPase inhibits the channeling of protons to lysosomes and leads to their rechanneling to mitochondria. An IGF2R-specific IGF2 mutant induces only the anti-inflammatory response and inhibits colitis progression. Together, our findings highlight a previously unidentified role of IGF2R activation in dictating anti-inflammatory macrophages.
RESUMEN
With the ongoing developments in laser scanning technology, applications for describing tunnel deformation using rich point cloud data have become a significant topic of investigation. This study describes the independently developed CNU-TS-2 mobile tunnel monitoring system for data acquisition, which has an electric system to control its forward speed and is compatible with various laser scanners such as the Faro and Leica models. A comparison with corresponding data acquired by total station data demonstrates that the data collected by CNU-TS-2 is accurate. Following data acquisition, the overall and local deformation of the tunnel is determined by denoising and 360° deformation analysis of the point cloud data. To enhance the expression of the analysis results, this study proposes an expansion of the tunnel point cloud data into a two-dimensional image via cylindrical projection, followed by an expression of the tunnel deformation through color difference to visualize the deformation. Compared with the three-dimensional modeling method of visualization, this method is easier to implement and facilitates storage. In addition, it is conducive to the performance of comprehensive analysis of problems such as water leakage in the tunnel, thereby achieving the effect of multiple uses for a single image.
RESUMEN
Preadipocytes can give rise to either white adipocytes or beige adipocytes. Owing to their distinct abilities in nutrient storage and energy expenditure, strategies that specifically promote "beiging" of adipocytes hold great promise for counterbalancing obesity and metabolic diseases. Yet, factors dictating the differentiation fate of adipocyte progenitors remain to be elucidated. We found that stearoyl-coenzyme A desaturase 1 (Scd1)-deficient mice, which resist metabolic stress, possess augmentation in beige adipocytes under basal conditions. Deletion of Scd1 in mature adipocytes expressing Fabp4 or Ucp1 did not affect thermogenesis in mice. Rather, Scd1 deficiency shifted the differentiation fate of preadipocytes from white adipogenesis to beige adipogenesis. Such effects are dependent on succinate accumulation in adipocyte progenitors, which fuels mitochondrial complex II activity. Suppression of mitochondrial complex II by Atpenin A5 or oxaloacetic acid reverted the differentiation potential of Scd1-deficient preadipocytes to white adipocytes. Furthermore, supplementation of succinate was found to increase beige adipocyte differentiation both in vitro and in vivo. Our data reveal an unappreciated role of Scd1 in determining the cell fate of adipocyte progenitors through succinate-dependent regulation of mitochondrial complex II.
Asunto(s)
Complejo II de Transporte de Electrones/metabolismo , Grasas/metabolismo , Obesidad/enzimología , Estearoil-CoA Desaturasa/genética , Ácido Succínico/metabolismo , Adipocitos Beige/citología , Adipocitos Beige/metabolismo , Adipogénesis , Animales , Metabolismo Energético , Proteínas de Unión a Ácidos Grasos/genética , Proteínas de Unión a Ácidos Grasos/metabolismo , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Obesidad/genética , Obesidad/metabolismo , Obesidad/fisiopatología , Estearoil-CoA Desaturasa/metabolismo , TermogénesisRESUMEN
Eggplant (Solanum melongena L.) is an economically and nutritionally important fruit crop of the Solanaceae family, which was domesticated in India and southern China. However, the genome regions subjected to selective sweeps in eggplant remain unknown. In the present study, we performed comparative transcriptome analysis of cultivated and wild eggplant species with emphasis on the selection pattern during domestication. In total, 44,073 (S. sisymbriifolium) to 58,677 (S. melongena cultivar S58) unigenes were generated for the six eggplant accessions with total lengths of 36.6-46 Mb. The orthologous genes were assessed using the ratio of nonsynonymous (K a) to synonymous (K s) nucleotide substitutions to characterize selective patterns during eggplant domestication. We identified 19 genes under positive selection across the phylogeny that were classified into four groups. The gene (OG12205) under positive selection was possibly associated with fruit-related traits in eggplant, which may have resulted from human manipulation. Eight positive selected genes were potentially involved in stress tolerance or disease resistance, suggesting that environmental changes and biotic stresses were important selective pressures in eggplant domestication. Taken together, our results shed light on the effects of artificial and natural selection on the transcriptomes of eggplant and its wild relatives. Identification of the selected genes will facilitate the understanding of genetic architecture of domesticated-related traits and provide resources for resistant breeding in eggplant.
RESUMEN
It is valuable to study the land use/land cover (LULC) classification for suburbs. The fusion of Light Detection and Ranging (LiDAR) data and aerial imagery is often regarded as an effective method for the LULC classification; however, more in-depth analysis would be required to explore effective information for enhancing the suburban LULC classification. In this study, first, both aerial imageries and point clouds were simultaneously collected. Then, LiDAR-derived models, i.e., normalized digital surface model (nDSM) and surface intensity model (IM), were generated from the elevation and intensity of point clouds. Further, considering the surface characteristics of ground objects in suburb, we proposed a new LiDAR-derived model, namely surface roughness model (RM), to reveal the degree of surface fluctuations. Additionally, various combinations of aerial imageries and the LiDAR-derived data were used to analyze the effects of multi-variable fusion under different scenarios and optimize the multi-variable integration for suburban LULC classification. The mean decrease impurity method was used to identify the importance of variables; three machine learning classifiers, i.e., random forest (RF), k-nearest neighbor (KNN) and artificial neural network (ANN) were adopted in various scenarios. The results were as follows. The fusion of aerial imagery and all the LiDAR-derived models, i.e., nDSM, RM and IM, with RF classifier performs best in the suburban LULC classification (overall accuracy = 84.75%, kappa coefficient = 0.80). Variable importance analysis shows that nDSM has the highest variable importance proportion (VIP) value, followed by RM, IM, and spectral information, indicating the feasibility of this proposed LiDAR-derived model-RM. This research presents effective methods relating to the application of aerial imagery and LiDAR-derived model for the complex suburban surface scenarios.