Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Base de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Connect Tissue Res ; 65(5): 397-406, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39140391

RESUMEN

PURPOSE: Joint contracture is a common disease in clinical practice, joint bleeding is an important factor affecting the progression of joint contracture. This study aimed to explore the effect of extracorporeal shock wave on alleviating joint capsule fibrosis caused by intra-articular hemorrhage in rats. METHODS: Forty two SD rats were randomly divided into seven groups. Perform simple fixation and fixation after blood injection separately. Measure the range of motion of each group's knee joints and calculate the corresponding degree of contraction. Use HE staining and Masson staining to detect the number of anterior joint capsule cells and collagen deposition. Detection of changes in Wnt1, ß-catenin protein expression in joint capsule using Western blotting. RESULTS: Compared to group C, the degree of knee joint contracture in M1 and M2 groups of rats increased, and collagen deposition, cell number and Wnt1, ß-catenin protein expression also increased accordingly. Compared to M1 and M2 groups, the degree of knee contraction in E1 and E2 groups were reduced, while collagen deposition, cell number and Wnt1, ß-catenin protein expression were decreased, and the degree of joint contracture in NR1 and NR2 groups showed no significant improvement. Compared to NR1 and NR2 groups, the degree of knee contraction in E1 and E2 groups were reduced, while collagen deposition, cell number and Wnt1, ß-catenin protein expression were decreased. CONCLUSIONS: Both rat models of knee joint contracture were successful, and joint bleeding can exacerbate joint contracture. Extracorporeal shock waves alleviate joint capsule fibrosis caused by intra-articular bleeding in rats.


Asunto(s)
Tratamiento con Ondas de Choque Extracorpóreas , Fibrosis , Cápsula Articular , Articulación de la Rodilla , Ratas Sprague-Dawley , Animales , Fibrosis/patología , Articulación de la Rodilla/patología , Cápsula Articular/patología , Masculino , Tratamiento con Ondas de Choque Extracorpóreas/métodos , Ratas , Hemorragia/patología , Hemorragia/terapia , beta Catenina/metabolismo
2.
J Hazard Mater ; 469: 133997, 2024 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-38508115

RESUMEN

Maternal exposure to glucocorticoids has been associated with adverse outcomes in offspring. However, the consequences and mechanisms of gestational exposure to prednisone on susceptibility to osteoporosis in the offspring remain unclear. Here, we found that gestational prednisone exposure enhanced susceptibility to osteoporosis in adult mouse offspring. In a further exploration of myogenic mechanisms, results showed that gestational prednisone exposure down-regulated FNDC5/irisin protein expression and activation of OPTN-dependent mitophagy in skeletal muscle of adult offspring. Additional experiments elucidated that activated mitophagy significantly inhibited the expression of FNDC5/irisin in skeletal muscle cells. Likewise, we observed delayed fetal bone development, downregulated FNDC5/irisin expression, and activated mitophagy in fetal skeletal muscle upon gestational prednisone exposure. In addition, an elevated total m6A level was observed in fetal skeletal muscle after gestational prednisone exposure. Finally, gestational supplementation with S-adenosylhomocysteine (SAH), an inhibitor of m6A activity, attenuated mitophagy and restored FNDC5/irisin expression in fetal skeletal muscle, which in turn reversed fetal bone development. Overall, these data indicate that gestational prednisone exposure increases m6A modification, activates mitophagy, and decreases FNDC5/irisin expression in skeletal muscle, thus elevating osteoporosis susceptibility in adult offspring. Our results provide a new perspective on the earlier prevention and treatment of fetal-derived osteoporosis.


Asunto(s)
Fibronectinas , Osteoporosis , Humanos , Ratones , Femenino , Animales , Embarazo , Prednisona/metabolismo , Fibronectinas/metabolismo , Exposición Materna , Mitofagia , Músculo Esquelético/metabolismo , Factores de Transcripción/metabolismo , Osteoporosis/inducido químicamente
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA