Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Curr Gene Ther ; 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39092652

RESUMEN

MicroRNAs (miRNAs) have emerged as a significant tool in the realm of vaccinology, offering novel approaches to vaccine development. This study investigates the potential of miRNAs in the development of advanced vaccines, with an emphasis on how they regulate immune response and control viral replication. We go over the molecular features of miRNAs, such as their capacity to direct post-transcriptional regulation toward mRNAs, hence regulating the expression of genes in diverse tissues and cells. This property is harnessed to develop live attenuated vaccines that are tissue-specific, enhancing safety and immunogenicity. The review highlights recent advancements in using miRNA-targeted vaccines against viruses like influenza, poliovirus, and tick-borne encephalitis virus, demonstrating their attenuated replication in specific tissues while retaining immunogenicity. We also explored the function of miRNAs in the biology of cancer, highlighting their potential to develop cancer vaccines through targeting miRNAs that are overexpressed in tumor cells. The difficulties in developing miRNA vaccines are also covered in this work, including delivery, stability, off-target effects, and the requirement for individualized cancer treatment plans. We wrap off by discussing the potential of miRNA vaccines and highlighting how they will influence the development of vaccination techniques for cancer and infectious diseases in the future.

2.
Artículo en Inglés | MEDLINE | ID: mdl-39005117

RESUMEN

Glucose monitoring is essential for managing diabetes, and continuous glucose monitoring biosensors can offer real-time monitoring with little invasiveness. However, challenges remain in improving sensor accuracy, selectivity, and overall performance. This article aims to review current trends and recent advancements in glucose-monitoring biosensors while evaluating their benefits and limitations for diabetes monitoring. An analysis of current literature on transdermal glucose sensors was conducted, focusing on detection techniques, novel nanomaterials, and integrated sensor systems. Recent research has led to advancements in electrochemical, optical, electromagnetic, and sonochemical sensors for transdermal glucose detection. The use of novel nanomaterials and integrated sensor designs has improved sensitivity, selectivity, and accuracy. However, issues like calibration requirements, motion artifacts, and skin irritation persist. Transdermal glucose sensors show promise for non-invasive, convenient diabetes monitoring but require further enhancements to address limitations in accuracy, reliability, and biocompatibility. Continued research and innovation focusing on sensor materials, designs, and surface chemistry is needed to optimize biosensor performance and utility. The study offers a comprehensive analysis of the present status of technological advancement and highlights areas that need more research.

3.
Artículo en Inglés | MEDLINE | ID: mdl-38047361

RESUMEN

BACKGROUND: Type 2 diabetes mellitus constitutes approximately 90% of all reported forms of diabetes mellitus. Insulin resistance characterizes this manifestation of diabetes. The prevalence of this condition is commonly observed in patients aged 45 and above; however, there is an emerging pattern of younger cohorts receiving diagnoses primarily attributed to lifestyle-related variables, including obesity, sedentary behavior, and poor dietary choices. The enzyme SGLT2 exerts a negative regulatory effect on insulin signaling pathways, resulting in the development of insulin resistance and subsequent elevation of blood glucose levels. The maintenance of glucose homeostasis relies on the proper functioning of insulin signaling pathways, while disruptions in insulin signaling can contribute to the development of type 2 diabetes. OBJECTIVE: Our study aimed to investigate the role of SGLT2. This enzyme interferes with insulin signaling pathways and identifies potential SGLT2 inhibitors as a treatment for managing type 2 diabetes. METHODS: We screened the Maybridge HitDiscover database to identify potent hits followed by druglikeness, Synthetic Accessibility, PAINS alert, toxicity estimation, ADME assessment, and Consensus Molecular docking. RESULTS: The screening process led to the identification of three molecules that demonstrated significant binding affinity, favorable drug-like properties, effective ADME, and minimal toxicity. CONCLUSION: The identified molecules could manage T2DM effectively by inhibiting SGLT2, providing a promising avenue for future therapeutic strategies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA