Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Inflamm Res ; 16: 895-916, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36883185

RESUMEN

Background: Immune microenvironment serves a vital role in glioma progression, and a large number of studies have found that tumor progression can be reduced to some extent by modulating the immune process in tumors. Materials and Methods: ImmuneScore of each sample in CGGA datasets were calculated with Estimate R package, and samples were grouped by median ImmuneScore values for differential analysis to obtain immune microenvironment differential genes. We further conducted survival analysis, ROC curve analysis, independent prognostic analysis, and clinical correlation analysis on glioma sample genes in CGGA to obtain glioma prognostic genes, and then identified their intersection with immune microenvironment DEGs by Venn tool. The GEPIA and UALCAN databases were used to verify the differential expression of intersecting genes in the glioma and normal brain and to identify our target gene. After validation of their prognostic value, we constructed a nomogram to calculate the risk score and to estimate the accuracy of prognostic model. We mined co-expression genes, enriched functions and pathways, and correlations to immune cell infiltration of unigene with an online database. Finally, we verified the differential expression of FCGBP in glioma by immunohistochemical staining. Results: We finally selected Fc fragment of IgG-binding protein (FCGBP) as our study gene. The prognostic values of FCGBP were validated by a series of analyses. Immunohistochemical staining showed that FCGBP expression increased in gliomas and was up-regulated with the progression of glioma grade. Conclusion: As a key unigene in glioma progression, FCGBP contributes to the regulation of immune microenvironment and has the potential to be a prognostic biomarker and immune targets.

2.
Neurocrit Care ; 36(1): 97-105, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34302276

RESUMEN

OBJECTIVE: We want to investigate the effect of aquaporin-4 (AQP4) on cerebral edema induced by ischemic stroke in rats and explore whether inhibiting the expression of AQP4 through acetazolamide (AZA) could attenuate brain edema and protect cerebral function. METHODS: The Sprague Dawley (SD) rats were randomly divided into four groups: sham + saline group, sham + AZA group, AZA intervention group, and nonintervention group. Each group was divided into five subgroups according to the time of cerebral ischemia (6 h, 1 day, 3 days, 5 days, and 7 days). The model of cerebral infarction in rats was adopted by means of the bilateral carotid arteries ligation (2-VO) method. The rats in intervention group were given intraperitoneal injection of AZA (35 mg/kg/day). Hematoxylin-eosin staining was performed for pathological analysis of the infarcted area. The brain water content was calculated to evaluate the degree of brain edema. The messenger RNA (mRNA) and protein expressions of AQP4 in the brain were measured by quantitative real-time polymerase chain reaction and immunohistochemistry, respectively. RESULTS: Significant cerebral pathological damages were found in ischemic stroke rats. The brain water content, protein, and mRNA expression of AQP4 of the intervention and nonintervention groups were markedly higher than those of the sham groups. By contrast, AZA administration reduced the brain water content, whereas improved cerebral dysfunction was induced by ischemic stroke. Moreover, AZA obviously reduced the protein and mRNA expression of AQP4 after ischemic stroke in rats' brains. CONCLUSIONS: The expression of AQP4 was closely related to cerebral edema induced by ischemic stroke. Decreasing the expression of AQP4 mRNA by AZA administration can effectively relieve cerebral edema and decrease cerebral pathological damage.


Asunto(s)
Edema Encefálico , Accidente Cerebrovascular Isquémico , Acetazolamida/farmacología , Animales , Acuaporina 4/metabolismo , Edema Encefálico/tratamiento farmacológico , Edema Encefálico/etiología , Edema Encefálico/metabolismo , ARN Mensajero , Ratas , Ratas Sprague-Dawley
3.
Aging (Albany NY) ; 13(11): 15459-15478, 2021 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-34148033

RESUMEN

BACKGROUND: Despite the better prognosis given by surgical resection and chemotherapy in low-grade glioma (LGG), progressive transformation is still a huge concern. In this case, the S100A gene family, being capable of regulating inflammatory responses, can promote tumor development. METHODS: The analysis was carried out via ONCOMINE, GEPIA, cBioPortal, String, GeneMANIA, WebGestalt, LinkedOmics, TIMER, CGGA, R 4.0.2 and immunohistochemistry. RESULTS: S100A2, S100A6, S100A10, S100A11, and S100A16 were up-regulated and S100A1 and S100A13 were down-regulated in LGG compared to normal tissues. S100A3, S100A4, S100A8, and S100A9 expression was up-regulated during the progression of glioma grade. In addition, genetic variation of the S100A family was high in LGG, and the S100A family genes mostly function through IL-17 signaling pathway, S100 binding protein, and inflammatory responses. The TIMER database also revealed a relationship between gene expression and immune cell infiltration. High expression of S100A2, S100A3, S100A4, S100A6, S100A8, S100A9, S100A10, S100A11, S100A13, and S100A16 was significantly associated with poor prognosis in LGG patients. S100A family genes S100A2, S100A3, S100A6, S100A10, and S100A11 may be prognosis-related genes in LGG, and were significantly associated with IDH mutation and 1p19q codeletion. The immunohistochemical staining results also confirmed that S100A2, S100A3, S100A6, S100A10, and S100A11 expression was upregulated in LGG. CONCLUSION: The S100A family plays a vital role in LGG pathogenesis, presumably facilitating LGG progression via modulating inflammatory state and immune cell infiltration.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Neoplasias Encefálicas/inmunología , Glioma/inmunología , Terapia Molecular Dirigida , Familia de Multigenes , Proteínas S100/genética , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/terapia , Glioma/patología , Glioma/terapia , Humanos , Clasificación del Tumor , Pronóstico , Proteínas S100/metabolismo
4.
Front Oncol ; 11: 643159, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33937046

RESUMEN

BACKGROUND: Glioma is one of the most common malignancies in the central nervous system and has limited effective therapeutic options. Therefore, we sought to identify a suitable target for immunotherapy. MATERIALS AND METHODS: We screened prognostic genes for glioma in the CGGA database and GSE43378 dataset using survival analysis, receiver operating characteristic (ROC) curves, independent prognostic analysis, and clinical correlation analysis. The results were intersected with immune genes from the ImmPort database through Venn diagrams to obtain likely target genes. The target genes were validated as prognostically relevant immune genes for glioma using survival, ROC curve, independent prognostic, and clinical correlation analyses in samples from the CGGA database and GSE43378 dataset, respectively. We also constructed a nomogram using statistically significant glioma prognostic factors in the CGGA samples and verified their sensitivity and specificity with ROC curves. The functions, pathways, and co-expression-related genes for the glioma target genes were assessed using PPI networks, enrichment analysis, and correlation analysis. The correlation between target gene expression and immune cell infiltration in glioma and the relationship with the survival of glioma patients were investigated using the TIMER database. Finally, target gene expression in normal brain, low-grade glioma, and high-grade glioma tissues was detected using immunohistochemical staining. RESULTS: We identified TNFRSF12A as the target gene. Satisfactory results from survival, ROC curve, independent prognosis, and clinical correlation analyses in the CGGA and GSE43378 samples verified that TNFRSF12A was significantly associated with the prognosis of glioma patients. A nomogram was constructed using glioma prognostic correlates, including TNFRSF12A expression, primary-recurrent-secondary (PRS) type, grade, age, chemotherapy, IDH mutation, and 1p19q co-deletion in CGGA samples with an AUC value of 0.860, which illustrated the accuracy of the prognosis prediction. The results of the TIMER analysis validated the significant correlation of TNFRSF12A with immune cell infiltration and glioma survival. The immunohistochemical staining results verified the progressive up-regulation of TNFRSF12A expression in normal brain, low-grade glioma, and high-grade glioma tissues. CONCLUSION: We concluded that TNFRSF12A was a viable prognostic biomarker and a potential immunotherapeutic target for glioma.

5.
Biosci Rep ; 40(7)2020 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-32667033

RESUMEN

BACKGROUND: Glioblastoma (GBM) has a high degree of malignancy, aggressiveness and recurrence rate. However, there are limited options available for the treatment of GBM, and they often result in poor prognosis and unsatisfactory outcomes. MATERIALS AND METHODS: In order to identify potential core genes in GBM that may provide new therapeutic insights, we analyzed three gene chips (GSE2223, GSE4290 and GSE50161) screened from the GEO database. Differentially expressed genes (DEG) from the tissues of GBM and normal brain were screened using GEO2R. To determine the functional annotation and pathway of DEG, Gene Ontology (GO) and KEGG pathway enrichment analysis were conducted using DAVID database. Protein interactions of DEG were visualized using PPI network on Cytoscape software. Next, 10 Hub nodes were screened from the differentially expressed network using MCC algorithm on CytoHubba software and subsequently identified as Hub genes. Finally, the relationship between Hub genes and the prognosis of GBM patients was described using GEPIA2 survival analysis web tool. RESULTS: A total of 37 up-regulated and 187 down-regulated genes were identified through microarray analysis. Amongst the 10 Hub genes selected, SV2B appeared to be the only gene associated with poor prognosis in glioblastoma based on the survival analysis. CONCLUSION: Our study suggests that high expression of SV2B is associated with poor prognosis in GBM patients. Whether SV2B can be used as a new therapeutic target for GBM requires further validation.


Asunto(s)
Biomarcadores de Tumor/genética , Neoplasias Encefálicas/genética , Glioblastoma/genética , Glicoproteínas de Membrana/genética , Proteínas del Tejido Nervioso/genética , Encéfalo/patología , Neoplasias Encefálicas/mortalidad , Neoplasias Encefálicas/patología , Biología Computacional , Conjuntos de Datos como Asunto , Regulación hacia Abajo , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes , Glioblastoma/mortalidad , Glioblastoma/patología , Humanos , Análisis de Secuencia por Matrices de Oligonucleótidos , Pronóstico , Mapeo de Interacción de Proteínas , Mapas de Interacción de Proteínas/genética , Análisis de Supervivencia , Regulación hacia Arriba
6.
Zhongguo Zhong Xi Yi Jie He Za Zhi ; 30(3): 299-302, 2010 Mar.
Artículo en Chino | MEDLINE | ID: mdl-20535932

RESUMEN

OBJECTIVE: To investigate the myocardial damage and changes of myocardial mitochondrial Mn-superoxide dismutase (Mn-SOD) activity in craniocerebral injured rats and the effect of Ginkgo biloba extract (GBE) on them. METHODS: Craniocerebral injured rats model was established by fluid-percussion and treated with GBE. The dynamical changes of electrocardiograph (ECG) in 24 h were monitored, the serum level of MB isoenzyme of creatine kinase (CK-MB) and the change of myocardial mitochondrial Mn-SOD activity as well as the pathologic changes of myocardium (HE staining) were observed. RESULTS: The occurrence of ECG abnormality obviously increased in the injured rats, accompanied with increased serum CK-MB (P<0.05) and decreased myocardial Mn-SOD levels (P<0.05), and the Mn-SOD activity was negatively correlated with the level of CK-MB (r=-0.997, P<0.05). Pretreatment of GBE resulted in the decrease of ECG abnormality occurrence (P<0.01), serum CK-MB level (P<0.05), and degree of myocardial damage, as well as the increase of Mn-SOD activity in post-craniocerebral injured rats. CONCLUSIONS: Craniocerebral injury can result in distinct myocardial damage, which is possibly correlated with the lowering of anti-oxidation stress level of myocardial cellular mitochondria. GBE possesses the protective effect on myocardial damage after craniocerebral injury.


Asunto(s)
Traumatismos Craneocerebrales/metabolismo , Ginkgo biloba , Miocardio/metabolismo , Extractos Vegetales/farmacología , Superóxido Dismutasa/metabolismo , Animales , Traumatismos Craneocerebrales/patología , Electrocardiografía , Masculino , Miocardio/patología , Oxidación-Reducción , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA