Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Vitam Horm ; 104: 153-195, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28215294

RESUMEN

Brain-derived neurotrophic factor (BDNF) belongs to a family of small secreted proteins that also include nerve growth factor, neurotrophin 3, and neurotrophin 4. BDNF stands out among all neurotrophins by its high expression levels in the brain and its potent effects at synapses. Several aspects of BDNF biology such as transcription, processing, and secretion are regulated by synaptic activity. Such observations prompted the suggestion that BDNF may regulate activity-dependent forms of synaptic plasticity such as long-term potentiation (LTP), a sustained enhancement of excitatory synaptic efficacy thought to underlie learning and memory. Here, we will review the evidence pointing to a fundamental role of this neurotrophin in LTP, especially within the hippocampus. Prominent questions in the field, including the release and action sites of BDNF during LTP, as well as the signaling and molecular mechanisms involved, will also be addressed. The diverse effects of BDNF at excitatory synapses are determined by the activation of TrkB receptors and downstream signaling pathways, and the functions, typically opposing in nature, of its immature form (proBDNF). The activation of p75NTR receptors by proBDNF and the implications for long-term depression will also be addressed. Finally, we discuss the synergy between TrkB and glucocorticoid receptor signaling to determine cellular responses to stress.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/metabolismo , Hipocampo/metabolismo , Potenciación a Largo Plazo , Modelos Neurológicos , Neuronas/metabolismo , Animales , Factor Neurotrófico Derivado del Encéfalo/genética , Regulación del Desarrollo de la Expresión Génica , Hipocampo/citología , Humanos , Neurogénesis , Plasticidad Neuronal , Neuronas/citología , Receptor de Factor de Crecimiento Nervioso/agonistas , Receptor de Factor de Crecimiento Nervioso/metabolismo , Receptores Tipo II del Factor de Necrosis Tumoral/agonistas , Receptores Tipo II del Factor de Necrosis Tumoral/metabolismo , Transducción de Señal
2.
Brain Res ; 1648(Pt B): 603-616, 2016 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-26923166

RESUMEN

In neurological disorders, both acute and chronic neural stress can disrupt cellular proteostasis, resulting in the generation of pathological protein. However in most cases, neurons adapt to these proteostatic perturbations by activating a range of cellular protective and repair responses, thus maintaining cell function. These interconnected adaptive mechanisms comprise a 'proteostasis network' and include the unfolded protein response, the ubiquitin proteasome system and autophagy. Interestingly, several recent studies have shown that these adaptive responses can be stimulated by preconditioning treatments, which confer resistance to a subsequent toxic challenge - the phenomenon known as hormesis. In this review we discuss the impact of adaptive stress responses stimulated in diverse human neuropathologies including Parkinson׳s disease, Wolfram syndrome, brain ischemia, and brain cancer. Further, we examine how these responses and the molecular pathways they recruit might be exploited for therapeutic gain. This article is part of a Special Issue entitled SI:ER stress.


Asunto(s)
Autofagia , Enfermedades del Sistema Nervioso , Deficiencias en la Proteostasis/complicaciones , Respuesta de Proteína Desplegada/fisiología , Animales , Estrés del Retículo Endoplásmico/fisiología , Humanos , Enfermedades del Sistema Nervioso/complicaciones , Enfermedades del Sistema Nervioso/metabolismo , Enfermedades del Sistema Nervioso/terapia , Complejo de la Endopetidasa Proteasomal/metabolismo , Transducción de Señal , Ubiquitina/metabolismo
3.
Cell Death Dis ; 6: e1645, 2015 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-25675305

RESUMEN

The glial cell line-derived neurotrophic factor (GDNF) has an important role in neuronal survival through binding to the GFRα1 (GDNF family receptor alpha-1) receptor and activation of the receptor tyrosine kinase Ret. Transient brain ischemia alters the expression of the GDNF signaling machinery but whether the GDNF receptor proteins are also affected, and the functional consequences, have not been investigated. We found that excitotoxic stimulation of cultured hippocampal neurons leads to a calpain-dependent downregulation of the long isoform of Ret (Ret51), but no changes were observed for Ret9 or GFRα1 under the same conditions. Cleavage of Ret51 by calpains was selectively mediated by activation of the extrasynaptic pool of N-methyl-d-aspartate receptors and leads to the formation of a stable cleavage product. Calpain-mediated cleavage of Ret51 was also observed in hippocampal neurons subjected to transient oxygen and glucose deprivation (OGD), a model of global brain ischemia, as well as in the ischemic region in the cerebral cortex of mice exposed to transient middle cerebral artery occlusion. Although the reduction of Ret51 protein levels decreased the total GDNF-induced receptor activity (as determined by assessing total phospho-Ret51 protein levels) and their downstream signaling activity, the remaining receptors still showed an increase in phosphorylation after incubation of hippocampal neurons with GDNF. Furthermore, GDNF protected hippocampal neurons when present before, during or after OGD, and the effects under the latter conditions were more significant in neurons transfected with human Ret51. These results indicate that the loss of Ret51 in brain ischemia partially impairs the neuroprotective effects of GDNF.


Asunto(s)
Isquemia Encefálica/metabolismo , Calpaína/metabolismo , Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Hipocampo/citología , Neuronas/metabolismo , Proteínas Proto-Oncogénicas c-ret/metabolismo , Animales , Células Cultivadas , Ácido Glutámico/farmacología , Humanos , Ratones , Neuronas/citología , Ratas , Transducción de Señal/efectos de los fármacos
4.
Neurobiol Dis ; 68: 26-36, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24746856

RESUMEN

Global cerebral ischemia induces selective acute neuronal injury of the CA1 region of the hippocampus. The type of cell death that ensues may include different programmed cell death mechanisms namely apoptosis and necroptosis, a recently described type of programmed necrosis. We investigated whether necroptosis contributes to hippocampal neuronal death following oxygen-glucose deprivation (OGD), an in vitro model of global ischemia. We observed that OGD induced a death receptor (DR)-dependent component of necroptotic cell death in primary cultures of hippocampal neurons. Additionally, we found that this ischemic challenge upregulated the receptor-interacting protein kinase 3 (RIP3) mRNA and protein levels, with a concomitant increase of the RIP1 protein. Together, these two related proteins form the necrosome, the complex responsible for induction of necroptotic cell death. Interestingly, we found that caspase-8 mRNA, a known negative regulator of necroptosis, was transiently decreased following OGD. Importantly, we observed that the OGD-induced increase in the RIP3 protein was paralleled in an in vivo model of transient global cerebral ischemia, specifically in the CA1 area of the hippocampus. Moreover, we show that the induction of endogenous RIP3 protein levels influenced neuronal toxicity since we found that RIP3 knock-down (KD) abrogated the component of OGD-induced necrotic neuronal death while RIP3 overexpression exacerbated neuronal death following OGD. Overexpression of RIP1 also had deleterious effects following the OGD challenge. Taken together, our results highlight that cerebral ischemia activates transcriptional changes that lead to an increase in the endogenous RIP3 protein level which might contribute to the formation of the necrosome complex and to the subsequent component of necroptotic neuronal death that follows ischemic injury.


Asunto(s)
Apoptosis/fisiología , Isquemia Encefálica/patología , Hipocampo/patología , Hipoxia/metabolismo , Neuronas/patología , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Regulación hacia Arriba/fisiología , Animales , Anticuerpos/farmacología , Apoptosis/efectos de los fármacos , Isquemia Encefálica/metabolismo , Células Cultivadas , Modelos Animales de Enfermedad , Maleato de Dizocilpina/farmacología , Embrión de Mamíferos , Glucosa/deficiencia , Hipocampo/citología , Hipoxia/patología , Imidazoles/farmacología , Indoles/farmacología , L-Lactato Deshidrogenasa/metabolismo , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Ratas , Ratas Sprague-Dawley , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Factor de Necrosis Tumoral alfa/inmunología , Factor de Necrosis Tumoral alfa/metabolismo , Regulación hacia Arriba/efectos de los fármacos
5.
Neuroscience ; 237: 66-86, 2013 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-23384605

RESUMEN

Brain-derived neurotrophic factor (BDNF) protects hippocampal neurons from glutamate excitotoxicity as determined by analysis of chromatin condensation, through activation of extracellular signal-regulated kinase (ERK) and phosphatidylinositol 3-kinase (PI3-K) signaling pathways. However, it is still unknown whether BDNF also prevents the degeneration of axons and dendrites, and the functional demise of synapses, which would be required to preserve neuronal activity. Herein, we have studied the time-dependent changes in several neurobiological markers, and the regulation of proteolytic mechanisms in cultured rat hippocampal neurons, through quantitative western blot and immunocytochemistry. Calpain activation peaked immediately after the neurodegenerative input, followed by a transient increase in ubiquitin-conjugated proteins and increased abundance of cleaved-caspase-3. Proteasome and calpain inhibition did not reproduce the protective effect of BDNF and caspase inhibition in preventing chromatin condensation. However, proteasome and calpain inhibition did protect the neuronal markers for dendrites (MAP-2), axons (Neurofilament-H) and the vesicular glutamate transporters (VGLUT1-2), whereas caspase inhibition was unable to mimic the protective effect of BDNF on neurites and synaptic markers. BDNF partially prevented the downregulation of synaptic activity measured by the KCl-evoked glutamate release using a Förster (Fluorescence) resonance energy transfer (FRET) glutamate nanosensor. These results translate a time-dependent activation of proteases and spatial segregation of these mechanisms, where calpain activation is followed by proteasome deregulation, from neuronal processes to the soma, and finally by caspase activation in the cell body. Moreover, PI3-K and PLCγ small molecule inhibitors significantly blocked the protective action of BDNF, suggesting an activity-dependent mechanism of neuroprotection. Ultimately, we hypothesize that neuronal repair after a degenerative insult is initiated at the synaptic level.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/farmacología , Ácido Glutámico/toxicidad , Hipocampo/citología , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Clorometilcetonas de Aminoácidos/farmacología , Animales , Axones/efectos de los fármacos , Axones/metabolismo , Calpaína/metabolismo , Células Cultivadas , Regulación hacia Abajo/efectos de los fármacos , Interacciones Farmacológicas , Embrión de Mamíferos , Inhibidores Enzimáticos/farmacología , Proteínas del Tejido Nervioso/metabolismo , Neuronas/citología , Ratas , Transducción de Señal/efectos de los fármacos , Canales Catiónicos TRPC/metabolismo , Factores de Tiempo
6.
Curr Mol Med ; 11(4): 326-49, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21506919

RESUMEN

Multiple Sclerosis is the most common non-traumatic disorder of the central nervous system and is generally regarded as an immune-mediated disorder that occurs in young adults. Since cerebrospinal fluid is in close contact with the extracellular surface of the brain, it is of great interest to examine possible biomarkers for multiple sclerosis. Proteomic studies of cerebrospinal fluid samples represent an important step towards a better understanding of the disease and may lead to the identification of clinically useful markers. Methodological advances in proteomics allowed the comparison of the protein content in different cerebrospinal fluid samples, using gel or liquid-based approaches coupled with mass spectrometry. In this paper, we discuss the advantages and limitations of the strategies employed and the potential biomarkers for multiple sclerosis identified so far using proteomics-based approaches.


Asunto(s)
Biomarcadores/líquido cefalorraquídeo , Encéfalo/metabolismo , Proteínas del Líquido Cefalorraquídeo , Esclerosis Múltiple/líquido cefalorraquídeo , Esclerosis Múltiple/genética , Adulto , Animales , Encéfalo/patología , Proteínas del Líquido Cefalorraquídeo/química , Proteínas del Líquido Cefalorraquídeo/genética , Cromatografía Liquida , Electroforesis en Gel Bidimensional , Estudios de Asociación Genética , Humanos , Espectrometría de Masas , Ratones , Esclerosis Múltiple/patología , Proteómica/métodos , Ratas
7.
Neurobiol Dis ; 40(3): 645-55, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20708684

RESUMEN

The GluA4-containing Ca(2+)-permeable α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptors (Ca-AMPARs) were previously shown to mediate excitotoxicity through mechanisms involving the activator protein-1 (AP-1), a c-Jun N-terminal kinase (JNK) substrate. To further investigate JNK involvement in excitotoxic pathways coupled to Ca-AMPARs we used HEK293 cells expressing GluA4-containing Ca-AMPARs (HEK-GluA4). Cell death induced by overstimulation of Ca-AMPARs was mediated, at least in part, by JNK. Importantly, JNK activation downstream of these receptors was dependent on the extracellular Ca(2+) concentration. In our quest for a molecular link between Ca-AMPARs and the JNK pathway we found that the JNK interacting protein-1 (JIP-1) interacts with the GluA4 subunit of AMPARs through the N-terminal domain. In vivo, the excitotoxin kainate promoted the association between GluA4 and JIP-1 in the rat hippocampus. Taken together, our results show that the JNK pathway is activated by Ca-AMPARs upon excitotoxic stimulation and suggest that JIP-1 may contribute to the propagation of the excitotoxic signal.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Calcio/metabolismo , Activación Enzimática/fisiología , MAP Quinasa Quinasa 4/metabolismo , Receptores AMPA/metabolismo , Transducción de Señal/fisiología , Animales , Western Blotting , Electroforesis en Gel de Poliacrilamida , Activación Enzimática/efectos de los fármacos , Agonistas de Aminoácidos Excitadores/farmacología , Células HEK293 , Humanos , Inmunoprecipitación , Ácido Kaínico/farmacología , Masculino , Ratas , Ratas Wistar , Receptores AMPA/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Transfección
8.
Phytomedicine ; 17(12): 980-6, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20381326

RESUMEN

The use of preparations from Bryophyllum pinnatum in tocolysis is supported by both clinical (retrospective comparative studies) and experimental (using uterus strips) evidence. We studied here the effect of B. pinnatum juice on the response of cultured human myometrial cells to stimulation by oxytocin, a hormone known to be involved in the control of uterine contractions by increasing the intracellular free calcium concentration ([Ca2+]i). In this work, [Ca2+]i was measured online during stimulation of human myometrial cells (hTERT-C3 and M11) with oxytocin, which had been pre-incubated in the absence or in the presence of B. pinnatum juice. Since no functional voltage-gated Ca2+ channels could be detected in these myometrial cells, the effect of B. pinnatum juice was as well studied in SH-SY5Y neuroblastoma cells, which are known to have such channels and can be depolarised with KCl. B. pinnatum juice prevented the oxytocin-induced increase in [Ca2+]i in hTERT-C3 human myometrial cells in a dose-dependent manner, achieving a ca. 80% inhibition at a 2% concentration. Comparable results were obtained with M11 human primary myometrial cells. In hTERT-C3 cells, prevention of the oxytocin-induced increase in [Ca2+]i was independent of the extracellular Ca2+ concentration and of voltage-dependent Ca2+-channels. B. pinnatum juice delayed, but did not prevent the depolarization-induced increase in [Ca2+]i in SH-SY5Y cells. Taken together, the data suggest a specific and concentration-dependent effect of B. pinnatum juice on the oxytocin signalling pathway, which seems to corroborate its use in tocolysis. Such a specific mechanism would explain the rare and minor side-effects in tocolysis with B. pinnatum as well as its high therapeutic index.


Asunto(s)
Canales de Calcio/efectos de los fármacos , Calcio/metabolismo , Kalanchoe , Miometrio/efectos de los fármacos , Preparaciones de Plantas/farmacología , Línea Celular , Línea Celular Tumoral , Relación Dosis-Respuesta a Droga , Femenino , Humanos , Miometrio/metabolismo , Neuroblastoma , Oxitocina/metabolismo , Transducción de Señal/efectos de los fármacos
9.
Neuroscience ; 158(1): 105-25, 2009 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-18424006

RESUMEN

Neuronal activity controls the strength of excitatory synapses by mechanisms that include changes in the postsynaptic responses mediated by AMPA receptors. These receptors account for most fast responses at excitatory synapses of the CNS, and their activity is regulated by various signaling pathways which control the electrophysiological properties of AMPA receptors and their interaction with numerous intracellular regulatory proteins. AMPA receptor phosphorylation/dephosphorylation and interaction with other proteins control their recycling and localization to defined postsynaptic sites, thereby regulating the strength of the synapse. This review focuses on recent advances in the understanding of the molecular mechanisms of regulation of AMPA receptors, and the implications in synaptic plasticity.


Asunto(s)
Plasticidad Neuronal/fisiología , Receptores AMPA/metabolismo , Sinapsis/metabolismo , Membranas Sinápticas/metabolismo , Transmisión Sináptica/fisiología , Animales , Ácido Glutámico/metabolismo , Humanos , Fosforilación , Transporte de Proteínas/fisiología , Transducción de Señal/fisiología , Sinapsis/ultraestructura , Membranas Sinápticas/ultraestructura
10.
Br J Pharmacol ; 153 Suppl 1: S310-24, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18059328

RESUMEN

The neurotrophin brain-derived neurotrophic factor (BDNF) plays an important role in the activity-dependent regulation of synaptic structure and function, particularly of the glutamatergic synapses. BDNF may be released in the mature form, which activates preferentially TrkB receptors, or as proBDNF, which is coupled to the stimulation of the p75(NTR). In the mature form BDNF induces rapid effects on glutamate release, and may induce short- and long-term effects on the postsynaptic response to the neurotransmitter. BDNF may affect glutamate receptor activity by inducing the phosphorylation of the receptor subunits, which may also affect the interaction with intracellular proteins and, consequently, their recycling and localization to defined postsynaptic sites. Stimulation of the local protein synthesis and transcription activity account for the delayed effects of BDNF on glutamatergic synaptic strength. Several evidences show impaired synaptic plasticity of glutamatergic synapses in diseases where compromised BDNF function has been observed, such as Huntington's disease, depression, anxiety, and the BDNF polymorphism Val66Met, suggesting that upregulating BDNF-activated pathways may be therapeutically relevant. This review focuses on recent advances in the understanding of the regulation of the glutamatergic synapse by BDNF, and its implications in synaptic plasticity.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/fisiología , Ácido Glutámico/fisiología , Sinapsis/fisiología , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Humanos , Plasticidad Neuronal/fisiología , Receptor de Factor de Crecimiento Nervioso/fisiología , Receptor trkB/fisiología , Transducción de Señal/fisiología , Fracciones Subcelulares/metabolismo , Sinapsis/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA