Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
ACS Appl Bio Mater ; 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38722351

RESUMEN

Nanofluids hold significant promise in diverse applications, particularly in biomedicine, where noble trimetallic nanofluids outperformed their monometallic counterparts. The composition, morphology, and size of these nanofluids play pivotal roles in their functionality. Controlled synthesis methods have garnered attention, focusing on precise morphology, content, biocompatibility, and versatile chemistry. Understanding how reaction parameters such as time, reducing agents, stabilizers, precursor concentration, temperature, and pH affect size and shape during synthesis is crucial. Trimetallic nanofluids, with their ideal composition, size, surface structure, and synergistic properties, are gaining traction in antimicrobial applications. These nanofluids were tested against seven microorganisms, demonstrating a heightened antimicrobial efficacy. Computational analyses, including molecular docking, dynamics, density functional theory (DFT), molecular electrostatic potential (MESP) analysis, and absorption, distribution, metabolism, elimination, and toxicology studies (ADMET) provided insights into binding interactions, energy, reactivity, and safety profiles, affirming the antimicrobial potential of trimetallic nanofluids. These findings emphasize the importance of controlled synthesis and computational validation in harnessing the unique properties of trimetallic nanofluids for biomedical applications.

2.
PLoS One ; 19(3): e0299238, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38483871

RESUMEN

BACKGROUND: Currently, there is no antiviral medication for dengue, a potentially fatal tropical infectious illness spread by two mosquito species, Aedes aegypti and Aedes albopictus. The RdRp protease of dengue virus is a potential therapeutic target. This study focused on the in silico drug discovery of RdRp protease inhibitors. METHODS: To assess the potential inhibitory activity of 29 phenolic acids from Theobroma cacao L. against DENV3-NS5 RdRp, a range of computational methods were employed. These included docking, drug-likeness analysis, ADMET prediction, density functional theory (DFT) calculations, and molecular dynamics (MD) simulations. The aim of these studies was to confirm the stability of the ligand-protein complex and the binding pose identified during the docking experiment. RESULTS: Twenty-one compounds were found to have possible inhibitory activities against DENV according to the docking data, and they had a binding affinity of ≥-37.417 kcal/mol for DENV3- enzyme as compared to the reference compound panduratin A. Additionally, the drug-likeness investigation produced four hit compounds that were subjected to ADMET screening to obtain the lead compound, catechin. Based on ELUMO, EHOMO, and band energy gap, the DFT calculations showed strong electronegetivity, favouravle global softness and chemical reactivity with considerable intra-molecular charge transfer between electron-donor to electron-acceptor groups for catechin. The MD simulation result also demonstrated favourable RMSD, RMSF, SASA and H-bonds in at the binding pocket of DENV3-NS5 RdRp for catechin as compared to panduratin A. CONCLUSION: According to the present findings, catechin showed high binding affinity and sufficient drug-like properties with the appropriate ADMET profiles. Moreover, DFT and MD studies further supported the drug-like action of catechin as a potential therapeutic candidate. Therefore, further in vitro and in vivo research on cocoa and its phytochemical catechin should be taken into consideration to develop as a potential DENV inhibitor.


Asunto(s)
Aedes , Cacao , Catequina , Chalconas , Dengue , Animales , Péptido Hidrolasas , Simulación de Dinámica Molecular , Catequina/farmacología , Endopeptidasas , Fenoles , ARN Polimerasa Dependiente del ARN , Simulación del Acoplamiento Molecular
3.
RSC Adv ; 14(14): 9878-9891, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38528929

RESUMEN

The current pharmacotherapies for Alzheimer's disease (AD) demonstrate limited efficacy and are associated with various side effects, highlighting the need for novel therapeutic agents. Natural products, particularly from medicinal plants, have emerged as a significant source of potential neuroprotective compounds. In this context, Cissampelos capensis L.f., renowned for its medicinal properties, has recently yielded three new proaporphine alkaloids; cissamaline, cissamanine, and cissamdine. Despite their promising bioactive profiles, the biological targets of these alkaloids in the context of AD have remained unexplored. This study undertakes a comprehensive in silico examination of the binding affinity and molecular interactions of these alkaloids with human protein targets implicated in AD. The drug likeness and ADME analyses indicate favorable pharmacokinetic profiles for these compounds, suggesting their potential efficacy in targeting the central nervous system. Molecular docking studies indicate that cissamaline, cissamanine, and cissamdine interact with key AD-associated proteins. These interactions are comparable to, or in some aspects slightly less potent than, those observed with established AD drugs, highlighting their potential as novel therapeutic agents for Alzheimer's disease. Crucially, Density Functional Theory (DFT) calculations offer deep insights into the electronic and energetic characteristics of these alkaloids. These calculations reveal distinct electronic properties, with differences in total energy, binding energy, HOMO-LUMO gaps, dipole moments, and electrophilicity indices. Such variations suggest unique reactivity profiles and molecular stability, pertinent to their pharmacological potential. Moreover, Molecular Electrostatic Potential (MEP) analyses provide visual representations of the electrostatic characteristics of these alkaloids. The analyses highlight areas prone to electrophilic and nucleophilic attacks, indicating their potential for specific biochemical interactions. This combination of DFT and MEP results elucidates the intricate electronic, energetic, and electrostatic properties of these compounds, underpinning their promise as AD therapeutic agents. The in silico findings of this study shed light on the promising potential of cissamaline, cissamanine, and cissamdine as agents for AD treatment. However, further in vitro and in vivo studies are necessary to validate these theoretical predictions and to understand the precise mechanisms through which these alkaloids may exert their therapeutic effects.

4.
J Cell Biochem ; 125(4): e30538, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38369774

RESUMEN

This computational study investigates 21 bioactive compounds from the Asteraceae family as potential inhibitors targeting the Spike protein (S protein) of SARS-CoV-2. Employing in silico methods and simulations, particularly CDOCKER and MM-GBSA, the study identifies two standout compounds, pterodontic acid and cichoric acid, demonstrating robust binding affinities (-46.1973 and -39.4265 kcal/mol) against the S protein. Comparative analysis with Favipiravir underscores their potential as promising inhibitors. Remarkably, these bioactives exhibit favorable ADMET properties, suggesting safety and efficacy. Molecular dynamics simulations validate their stability and interactions, signifying their potential as effective SARS-CoV-2 inhibitors.


Asunto(s)
Asteraceae , Simulación de Dinámica Molecular , SARS-CoV-2 , Antivirales/farmacología , Simulación del Acoplamiento Molecular
5.
J Biomol Struct Dyn ; : 1-15, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38356140

RESUMEN

Cancer is an aberrant differentiation of normal cells, characterized by uncontrolled growth and the potential to acquire invasive and aggressive properties that ultimately lead to metastasis. In the realm of scientific exploration, a multitude of pathways has been investigated and targeted by researchers, among which one specific pathway is recognized as WDR5-MYC. Continuous investigations and research show that WDR5-MYC is a therapeutic target protein. Hence, the discovery of naturally occurring compounds with anticancer properties has been suggested as a rapid and efficient alternative for the development of anticancerous therapeutics. A virtual screening approach was used to identify the most potent compounds from the NP-lib database at the MTiOpenScreen webserver against WDR5-MYC. This process yielded a total of 304 identified compounds. Subsequently, after screening, four potent compounds, namely Estrone (ZINC000003869899), Ethyl-1,2-benzanthracene (ZINC000003157052), Strychnine (ZINC000000119434) and 7H-DIBENZO [C, G] CARBAZOLE (ZINC000001562130), along with a cocrystallized 5-[4-(trifluoromethyl) phenyl]-1H-tetrazole inhibitor (QBP) as a reference ligand, were considered for stringent molecular docking. Thus, each compound exhibited significant docking energy between -8.2 and -7.7 kcal/mol and molecular contacts with essential residue Asn225, Lys250, Ser267 and Lys272 in the active pocket of WDR5-MYC against the QBP inhibitor (the native ligand QBP serves as a reference in the comparative analysis of docked complexes). The results support the potent compounds for drug-likeness and strong binding affinity with WDR5-MYC protein. Further, the stability of the selected compounds was predicted by molecular dynamics simulation (100 ns) contributed by intermolecular hydrogen bonds and hydrophobic interactions. This demonstrates the potential of the selected compounds to be used against breast cancer treatment.Communicated by Ramaswamy H. Sarma.

6.
J Biomol Struct Dyn ; : 1-14, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38260948

RESUMEN

The goal of this work is to use a variety of in-silico techniques to identify anti-diabetic agents against DPP-IV enzyme from five main curcumin analogues. To produce the successful molecules, five main curcumin analogues were docked into the active site of DPP-IV enzyme. In comparison to the control molecule (Saxagliptin, -6.9 kcal/mol), all the compounds have the highest binding affinity (-7.6 to -7.7 kcal/mol) for the DPP-IV enzyme. These compounds underwent further testing for studies on drug-likeness, pharmacokinetics, and acute toxicity to see the efficacy and safety of compounds. To assess the stability of the docking complex and the binding posture identified during the docking experiment, our study got THC as the lead compound, which was then exposed to 200 ns of molecular dynamic simulation and PCA analysis. Additionally, DFT calculations were conducted to determine the thermodynamic, molecular orbital, and electrostatic potential characteristics of lead compound. Overall, the lead chemical has shown strong drug-like properties, is non-toxic, and has a sizable affinity for the DPP-IV enzyme.Communicated by Ramaswamy H. Sarma.

7.
J Biomol Struct Dyn ; 42(2): 1031-1046, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37545158

RESUMEN

Type 2 Diabetes (T2D), a chronic metabolic disorder characterized by persistent hyperglycemia, accounts for ∼90% of all types of diabetes. Pancreatic α-amylase is a potential drug target for preventing postprandial hyperglycemia and inhibiting T2D in humans. Although many synthetic drugs have been identified against pancreatic α-amylase, however, reported several side effects, and plant-derived natural products are less explored against T2D. This study tested 34 flavonoids derived from the plant Physalis peruviana against the human pancreatic α-amylase (HPA) using in silico computational approaches such as molecular docking and molecular dynamics simulation approaches. Schrödinger, a drug discovery package with modules applicable for molecular docking, protein-ligand interaction analysis, molecular dynamics, post-dynamics simulation, and binding free energy calculation, was employed for all computational studies. Four flavonoids, namely, Chlorogenic acid, Withaperuvin F, Withaperuvin H, and Rutin, were picked based on their docking score ranging between -7.03 kcal/mol and -11.35 kcal/mol compared to the docking score -7.3 kcal/mol of reference ligand, i.e. Myricetin. The molecular dynamics analysis suggested that all flavonoids showed considerable stability within the protein's catalytic pocket, except chlorogenic acid, which showed high deviation during the last 15 ns. However, the interactions observed in initial docking and extracted from the simulation trajectory involved > 90% identical residues, indicating the affinity and stability of the docked flavonoids with the protein. Therefore, all four compounds identified in this study are proposed as promising antidiabetic candidates and should be further considered for their in vitro and in vivo validation.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Diabetes Mellitus Tipo 2 , Physalis , Humanos , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Inhibidores de Glicósido Hidrolasas , Ácido Clorogénico , Ligandos , Simulación del Acoplamiento Molecular , alfa-Amilasas Pancreáticas , Flavonoides , Simulación de Dinámica Molecular
8.
J Biomol Struct Dyn ; 42(3): 1533-1543, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37079006

RESUMEN

Human Lymphatic filariasis is caused by parasitic nematodes Wuchereria bancrofti, Brugia malayi, and Brugia timori. Protein disulfide isomerase (PDI), a redox-active enzyme, helps to form and isomerize the disulfide bonds, thereby acting as a chaperone. Such activity is essential for activating many essential enzymes and functional proteins. Brugia malayi protein disulfide isomerase (BmPDI) is crucial for parasite survival and an important drug target. Here, we used a combination of spectroscopic and computational analysis to study the structural and functional changes in the BmPDI during unfolding. Tryptophan fluorescence data revealed two well-separated transitions during the unfolding process, suggesting that the unfolding of the BmPDI is non-cooperative. The binding of the fluorescence probe 8-anilino-1-naphthalene sulfonic acid dye (ANS) validated the results obtained by the pH unfolding. The dynamics of molecular simulation performed at different pH conditions revealed the structural basis of BmPDI unfolding. Detailed analysis suggested that under different pH, both the global structure and the conformational dynamics of the active site residues were differentially altered. Our multiparametric study reveals the differential dynamics and collective motions of BmPDI unfolding, providing insights into its structure-function relationship.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Brugia Malayi , Animales , Humanos , Proteína Disulfuro Isomerasas , Desplegamiento Proteico , Dominio Catalítico , Relación Estructura-Actividad
9.
Biometals ; 37(1): 247-265, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37938497

RESUMEN

Malaria, a relentless and ancient adversary, continues to cast its shadow over vast swathes of the globe, afflicting millions of people and have a heavy toll on human health and well-being. Despite substantial progress in the fight against this parasitic disease in recent decades, malaria still persists as a substantial global health concern, especially in some specific region which have limited resources and vulnerable populations. Thus, to ascertain an combating agent for malaria and its associated dysfunction, 4-(4-ethylphenyl)-3-thiosemicarbazide and benzaldehydes based two new thiosemicarbazone ligands (1-2) and their cobalt(II), nickel(II), copper(II), zinc(II) metal complexes (3-10) were synthesized in the present research work. The synthesized compounds were comprehensive characterized through spectral and physical investigations, demonstrating octahedral stereochemistry of the complexes. Further, the antimalarial and antioxidant potential of the compounds (1-10) were analyzed by micro assay and DPPH assay protocols, respectively, to examine the therapeutic aspect of the compounds. The performed biological evaluations revealed that the complexes are more efficient in controlling infectious ailment in comparison of ligands. The complexes (5), (6), (10) shows significant efficiency for malarial and oxidant dysfunctions whereas Zn(II) complex (6) exhibit highest potency with 1.02 ± 0.07 and 2.28 ± 0.05 µM IC50 value. Furthermore, to support the highest antimalarial potency of the (3-6) complexes and their associated ligand (1), the computational studies like molecular docking, DFT, MESP and ADMET analysis were executed which were supported the biological efficacy of the complex (6) by providing numerous parameters like binding interaction electronegativity, electrophilicity, HOMO value and electron density.


Asunto(s)
Antimaláricos , Complejos de Coordinación , Malaria , Tiosemicarbazonas , Humanos , Antimaláricos/farmacología , Antimaláricos/química , Simulación del Acoplamiento Molecular , Antioxidantes/farmacología , Antioxidantes/química , Tiosemicarbazonas/farmacología , Tiosemicarbazonas/química , Ligandos , Complejos de Coordinación/farmacología , Complejos de Coordinación/química , Zinc/química , Cobre/química , Quelantes
10.
J Biomol Struct Dyn ; : 1-12, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38084877

RESUMEN

The emergence of the Zika virus, which belongs to the Flaviviridae family, became a significant worldwide health issue due to its link with severe neurological complications. The RNA-dependent RNA polymerase (RdRp) of the Zika virus plays a significant part in the replication of the virus and is considered a promising candidate for antiviral drug identification. In this study, we employed computer-based drug discovery approaches to identify potential natural compounds that could act as inhibitors against the RdRp protein of the Zika virus. A comprehensive virtual screening strategy was implemented using the MTiOpenScreen webserver to identify natural compounds from the NP-Lib database. Four natural compounds having the ZINC ID - ZINC000253499147, ZINC000299817665, ZINC000044404209, and ZINC000253388535 were selected based on the binding score revealed during virtual screening. Molecular docking simulations of these selected compounds and reference compounds were performed to assess the binding affinities and the molecular bonds formed during the docking. Additionally, molecular dynamics (MD) simulations, endpoint free binding energy calculation and principal component analysis (PCA) were performed to evaluate the stability and dynamics of the protein-ligand complexes. These compounds exhibited favourable binding energies and formed stable interactions within the active site of the RdRp protein. Moreover, the molecular dynamics simulations revealed the robustness of the protein-ligand complexes, suggesting the potential for sustained inhibition. These findings provide valuable insights for the design and development of novel therapeutic interventions against Zika virus infection. Further experimental validation and optimization of the identified compounds are warranted to advance their potential translation into effective antiviral drugs.Communicated by Ramaswamy H. Sarma.

11.
Water Sci Technol ; 88(11): 2873-2888, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38096075

RESUMEN

The water quality of Himalayan rivers has declined due to human activities, untreated effluent discharge, and poor sewage and drainage systems. The current study aimed to assess the water quality of these rivers using multivariate statistical analysis throughout four seasons. The analyses of 44 surface water samples taken during the monsoon, winter, spring, and summer seasons are well within the ranges acceptable for drinking and domestic use after the sedimentation. The suspended soils and turbidity are highly correlated and affect the water quality index (WQI). The WQI of headwater streams is good during low water flow seasons and poor during high water flow seasons. This is due to the number of melting glaciers and suspended solids/turbidity. Principal component analysis shows that in all the seasons, human activities such as road-cutting projects across the river and natural causes such as intense rainfall and melting of moraine-filled glaciers both impact the WQI. The findings of this study provide important information for future research and policy decisions aimed at improving the water quality of the Himalayan rivers.


Asunto(s)
Monitoreo del Ambiente , Ríos , Calidad del Agua , Cubierta de Hielo , Estaciones del Año , Nieve , Himalayas
12.
Future Med Chem ; 15(21): 1919-1942, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37929611

RESUMEN

Aim: In the 21st century, we are witness of continuous onslaughts of various pathogen deformities which are a major cause of morbidity and mortality worldwide. Therefore, to investigate the grave for these deformities, antioxidant, anti-inflammatory and antimicrobial biological activities were carried out against newly synthesized Schiff base ligands and their transition metal complexes, which are based on newly synthesized 2-phenoxyaniline and salicylaldehyde derivatives. Materials & methods: The synthesized compounds were characterized by various physiochemical studies, demonstrating the octahedral stereochemistry of the complexes. Results: The biological assessments revealed that complex 6 (3.01 ± 0.01 µM) was found to be highly active for oxidant ailments whereas complex 14 (7.14 ± 0.05 µM, 0.0041-0.0082 µmol/ml) was observed as highly potent for inflammation and microbial diseases. Conclusion: Overall, the biological and computational studies demonstrate that the nickel(II) complex 14 can act as an excellent candidate for pathogen deformities.


Asunto(s)
Complejos de Coordinación , Elementos de Transición , Níquel/química , Complejos de Coordinación/farmacología , Complejos de Coordinación/química , Antioxidantes/química , Ligandos , Pruebas de Sensibilidad Microbiana , Antibacterianos/farmacología , Antibacterianos/química
13.
J Biomol Struct Dyn ; : 1-17, 2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37811742

RESUMEN

Japanese encephalitis (JE), a neurological infection of severe nature, is caused by the Japanese encephalitis virus (JEV) and is transmitted by the mosquito vector. The polymerase domain of Non-structural 5 (NS5), which is also referred to as RdRp (RNA-dependent RNA polymerase), is considered a potential therapeutic target for JEV. The present study employed molecular dynamics modelling and high-throughput virtual screening to evaluate the possible antiviral activity of anti-dengue drugs against JEV RdRp. Furthermore, a ranking was performed utilising the MM/GBSA analysis to identify the three most promising compounds. Compound ID 57409246 exhibited the highest binding affinity with the protein, as evidenced by its minimum binding free energy of -72.96 kcal/mole. In contrast, the other two compounds had minimum binding free energies of -67.57 and -59.19 kcal/mole, respectively. Upon conducting a 100 nanosecond molecular dynamics simulation to confirm the binding of the chemical complexes, it was observed that the three hits, namely 57409246, 70683874, and 44577154, exhibited a consistent and stable RMSD. Subsequently, the binding strength of the trajectory was confirmed through MM/GBSA analysis. The compounds 70683874 and 57409246 exhibited the lowest binding free energies, which were -97.58 kcal/mol and -96.38 kcal/mol, respectively. The binding free energy (ΔG Bind) values for the native ligand ATP and molecule 44577154 were -65.64 kcal/mol and -69.44 kcal/mol, respectively. Overall, compared to the native ligand ATP, all three compounds exhibited higher binding affinity. The study proposes three anti-dengue molecules as a potential remedy for JE, which can be confirmed through in vitro and in vivo investigations.Communicated by Ramaswamy H. Sarma.

14.
Sci Rep ; 13(1): 14570, 2023 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-37666979

RESUMEN

Monkeypox viral infection is an emerging threat and a major concern for the human population. The lack of drug molecules to treat this disease may worsen the problem. Identifying potential drug targets can significantly improve the process of developing potent drug molecules for treating monkeypox. The proteins responsible for viral replication are attractive drug targets. Identifying potential inhibitors from known drug molecules that target these proteins can be key to finding a cure for monkeypox. In this work, two viral proteins, DNA-dependent RNA polymerase (DdRp) and viral core cysteine proteinase, were considered as potential drug targets. Sixteen antibiotic drugs from the tetracycline class were screened against both viral proteins through high-throughput virtual screening. These tetracycline class of antibiotic drugs have the ability to inhibit bacterial protein synthesis, which makes these antibiotics drugs a prominent candidate for drug repurposing. Based on the screening result obtained against DdRp, top two compounds, namely Tigecycline and Eravacycline with docking scores of - 8.88 and - 7.87 kcal/mol, respectively, were selected for further analysis. Omadacycline and minocycline, with docking scores of - 10.60 and - 7.51 kcal/mol, are the top two compounds obtained after screening proteinase with the drug library. These compounds, along with reference compounds GTP for DdRp and tecovirimat for proteinase, were used to form protein-ligand complexes, followed by their evaluation through a 300 ns molecular dynamic simulation. The MM/GBSA binding free energy calculation and principal components analysis of these selected complexes were also conducted for understanding the dynamic stability and binding affinity of these compounds with respective target proteins. Overall, this study demonstrates the repurposing of tetracycline-derived drugs as a therapeutic solution for monkeypox viral infection.


Asunto(s)
Monkeypox virus , Mpox , Humanos , Reposicionamiento de Medicamentos , Antibacterianos/farmacología , Tetraciclina/farmacología , Minociclina , Descubrimiento de Drogas , Péptido Hidrolasas
15.
J Biomol Struct Dyn ; : 1-16, 2023 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-37676262

RESUMEN

Numerous malignancies, including breast cancer, non-small cell lung cancer, and chronic myeloid leukemia, are brought on by aberrant tyrosine kinase signaling. Since the current chemotherapeutic medicines are toxic, there is a great need and demand from cancer patients to find novel chemicals that are toxic-free or have low toxicity and that can kill tumor cells and stop their growth. This work describes the in-silico examination of substances from the drug bank as EGFR inhibitors. Firstly, drug-bank was screened using the pharmacophore technique to select the ligands and Erlotinib (DB00530) was used as matrix compound. The selected ligands were screened using ADMET and the hit compounds were subjected to docking. The lead compound from the docking was subjected to DFT and MD simulation study. Using the pharmacophore technique, 23 compounds were found through virtual drug bank screening. One hit molecule from the ADMET prediction was the subject of docking study. According to the findings, DB03365 molecule fits to the EGFR active site by several hydrogen bonding interactions with amino acids. Furthermore, DFT analysis revealed high reactivity for DB03365 compound in the binding pocket of the target protein, based on ELUMO, EHOMO and band energy gap. Furthermore, MD simulations for 100 ns revealed that the ligand interactions with the residues of EGFR protein were part of the essential residues for structural stability and functionality. However, DB03365 was a promising lead molecule that outperformed the reference compound in terms of performance and in-vitro and in-vivo experiments needs to validate the study.Communicated by Ramaswamy H. Sarma.

16.
Sci Rep ; 13(1): 15906, 2023 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-37741819

RESUMEN

Tuberculosis disease is a serious threat to humans and spreading quickly worldwide, therefore, to find a potent drug, the synthesis of hydrazone ligands endowed Co(II), Ni(II), Cu(II), Zn(II) metal complexes were carried out and well characterized by numerous spectral and analytical techniques. The octahedral geometry of the complexes was confirmed by spectral analysis. Further, in vitro antituberculosis efficacy of the compounds (1-10) revealed that complexes (6), (9), (10) have highest potency to control TB malformation with 0.0028 ± 0.0013-0.0063 ± 0.0013 µmol/mL MIC value while Zn(II) complex (10) (0.0028 ± 0.0013 µmol/mL) has nearly four time potent to suppress TB disease in comparison of streptomycin (0.0107 ± 0.0011 µmol/mL). The antimicrobial and anti-inflammatory evaluations revealed that the complex (10) is more active with lowest MIC (0.0057-0.0114 µmol/mL) and IC50 (7.14 ± 0.05 µM) values, correspondingly which are comparable with their respective standard drugs. Furthermore, the theoretical studies such as molecular docking, DFT, MESP and ADMET were employed to authenticate the potency of HL2 hydrazone ligand (2) and its metal complexes (7-10) which revealed that the zinc(II) complex (10) might be utilized as novel drug candidate for tuberculosis dysfunctions. So, the present research gives a new insight for in vivo investigation of the compounds.


Asunto(s)
Antiinfecciosos , Complejos de Coordinación , Humanos , Ligandos , Complejos de Coordinación/farmacología , Simulación del Acoplamiento Molecular , Antiinflamatorios , Zinc , Hidrazonas/farmacología
17.
Pharmaceuticals (Basel) ; 16(8)2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37631073

RESUMEN

A sequence of novel 1,4-dihydropyridines (DHP) and their hybrids was developed using a multicomponent strategy under environmentally benign conditions. In addition, computational studies were performed, and the ligand-protein interactions calculated in different bacteria and two fungal strains. Para-hydroxy-linked DHP (5f) showed the best binding energies of 3.591, 3.916, 8.499 and 6.895 kcal/mol against various pathogens used and other substances received a good docking score. The pathogen resistance potential of the synthesized targets against four bacteria and two fungi showed that whole DHP substances exhibit different levels of resistance to each microorganism. Gram-positive bacteria, which are highly sensitive to all molecules, and the MTCC-1884-encoded fungus strongly rejected the studied compounds compared to comparator drugs. In particular, the 5f candidate showed remarkable antimicrobial activity, followed by the substances 5a, 5b, 5j, 5k and 5l. Furthermore, MIC and MBC/MFC properties showed that 5f had a minimum bacterial concentration of 12.5 µg/mL against E. coli and against two fungal pathogens, with its killing activity being effective even at low concentrations. On the other hand, whole motifs were tested for their cytotoxic activity, revealing that the methoxy and hydroxy-linked compounds (5h) showed greater cytotoxic potency, followed by the two hydroxy linked compounds (5d and 5f). Overall, this synthetic approach used represents a prototype for future nature-favored synthesis methods and these biological results serve as a guide for future therapeutic drug research. However, the computer results play an important role in the further development of biological experiments.

18.
J Biomol Struct Dyn ; : 1-13, 2023 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-37551014

RESUMEN

Tuberculosis infection has always been a global concern for public health, and the mortality rate has increased tremendously every year. The ability of the resuscitation Mycobacterium tuberculosis (Mtb) from the dormant state is one of the major reasons for the epidemic spread of tuberculosis infection, especially latent tuberculosis infection (LTBI). The element that encourages resuscitation, RpfB (resuscitation-promoting factors B), is mostly in charge of bringing Mtb out of slumber. This reason makes RpfB a promising target for developing tuberculosis drugs because of the effects of latent tuberculosis. Therefore, this work was executed using a computational three-level screening of the Selleckhem antibiotics database consisting of 462 antibiotics against the ligand binding region of the RpfB protein, followed by an estimation of binding free energy for ideal identification and confirmation of potential RpfB inhibitor. Subsequently, three antibiotic drug molecules, i.e., Amikacin hydrate (-66.87 kcal/mol), Isepamicin sulphate (-60.8 kcal/mol), and Bekanamycin (-46.89 kcal/mol), were selected on the basis of their binding free energy value for further computational studies in comparison to reference ligand, 4-benzoyl-2-nitrophenyl thiocyanate (NPT7). Based on the intermolecular interaction profiling, 200 ns molecular dynamic simulation (MD), post-simulation analysis and principal component analysis (PCA), the selected antibiotics showed substantial stability with the RpfB protein compared to the NPT7 inhibitor. Conclusively based on the computational results, the preferred drugs can be potent inhibitors of the RpfB protein, which can be further validated using in vivo research and in vitro enzyme inhibition to understand their therapeutic activity against tuberculosis infection.Communicated by Ramaswamy H. Sarma.

19.
J Biomol Struct Dyn ; : 1-11, 2023 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-37632317

RESUMEN

Aedes aegypti is the primary vector for the transmission of the dengue virus, which causes dengue fever, dengue hemorrhagic illness and dengue shock syndrome. There is now no antiviral medication available to treat DENV, which kills thousands of people each year and infects millions of individuals. A possible target for the creation of fresh and efficient dengue treatments is the DENV-3 NS5 MTase. So, Nigella sativa quinones were examined using in silico methods to find natural anti-DENV compounds. The in silico docking was conducted utilising the Discovery Studio software on the quinones of N. sativa and the active site of the target protein DENV-3 NS5 MTase. In addition, the druggability and pharmacokinetics of the lead compound were assessed. Dithymoquinone was comparable to the reference compound in terms of its ability to bind to the active site of target protein. Dithymoquinone met the requirements for drug likeness and Lipinski's principles, as demonstrated by the ADMET analysis and drug likeness results. The current study indicated that the dithymoquinone from N. sativa had anti-DENV activity, suggesting further drug development and dengue treatment optimisation.Communicated by Ramaswamy H. Sarma.

20.
Int J Mol Sci ; 24(13)2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37446136

RESUMEN

Pyrazolo[4,3-e]tetrazolo[1,5-b][1,2,4]triazine sulfonamides (MM-compounds) are a relatively new class of heterocyclic compounds that exhibit a wide variety of biological actions, including anticancer properties. Here, we used caspase enzyme activity assays, flow cytometry analysis of propidium iodide (PI)-stained cells, and a DNA laddering assay to investigate the mechanisms of cell death triggered by the MM-compounds (MM134, -6, -7, and -9). Due to inconsistent results in caspase activity assays, we have performed a bromodeoxyuridine (BrdU) incorporation assay, colony formation assay, and gene expression profiling. The compounds' cytotoxic and pro-oxidative properties were also assessed. Additionally, computational studies were performed to demonstrate the potential of the scaffold for future drug discovery endeavors. MM-compounds exhibited strong micromolar (0.06-0.35 µM) anti-proliferative and pro-oxidative activity in two cancer cell lines (BxPC-3 and PC-3). Activation of caspase 3/7 was observed following a 24-h treatment of BxPC-3 cells with IC50 concentrations of MM134, -6, and -9 compounds. However, no DNA fragmentation characteristics for apoptosis were observed in the flow cytometry and DNA laddering analysis. Gene expression data indicated up-regulation of BCL10, GADD45A, RIPK2, TNF, TNFRSF10B, and TNFRSF1A (TNF-R1) following treatment of cells with the MM134 compound. Moreover, in silico studies indicated AKT2 kinase as the primary target of compounds. MM-compounds exhibit strong cytotoxic activity with pro-oxidative, pro-apoptotic, and possibly pro-necroptotic properties that could be employed for further drug discovery approaches.


Asunto(s)
Antineoplásicos , Triazinas , Línea Celular Tumoral , Triazinas/farmacología , Sulfonamidas/farmacología , Antineoplásicos/farmacología , Apoptosis , Caspasas/metabolismo , Sulfanilamida/farmacología , Ensayos de Selección de Medicamentos Antitumorales , Proliferación Celular , Estructura Molecular , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA