Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Proc Biol Sci ; 291(2014): 20231995, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38196365

RESUMEN

The maintenance of colour variation in wild populations has long fascinated evolutionary biologists, although most studies have focused on discrete traits exhibiting rather simple inheritance patterns and genetic architectures. However, the study of continuous colour traits and their potentially oligo- or polygenic genetic bases remains rare in wild populations. We studied the genetics of the continuously varying white-to-rufous plumage coloration of the European barn owl (Tyto alba) using a genome-wide association approach on the whole-genome data of 75 individuals. We confirmed a mutation at the melanocortin-1-receptor gene (MC1R) is involved in the coloration and identified two new regions, located in super-scaffolds 9 and 42. The combination of the three regions explains most of the colour variation (80.37%, 95% credible interval 58.45-100%). One discovered region, located in the sex chromosome, differs between the most extreme colorations in owls sharing a specific MC1R genotype. This region may play a role in the colour sex dimorphism of this species, possibly in interaction with the autosomal MC1R. We thus provide insights into the genetic architecture of continuous colour variation, pointing to an oligogenic basis with potential epistatic effects among loci that should aid future studies understanding how continuous colour variation is maintained in nature.


Asunto(s)
Estrigiformes , Humanos , Animales , Estrigiformes/genética , Color , Estudio de Asociación del Genoma Completo , Genómica , Genotipo
2.
Mol Ecol ; 31(2): 482-497, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34695244

RESUMEN

The climate fluctuations of the Quaternary shaped the movement of species in and out of glacial refugia. In Europe, the majority of species followed one of the described traditional postglacial recolonization routes from the southern peninsulas towards the north. Like most organisms, barn owls are assumed to have colonized the British Isles by crossing over Doggerland, a land bridge that connected Britain to northern Europe. However, while they are dark rufous in northern Europe, barn owls in the British Isles are conspicuously white, a contrast that could suggest selective forces are at play on the islands. Yet, our analysis of known candidate genes involved in coloration found no signature of selection. Instead, using whole genome sequences and species distribution modelling, we found that owls colonised the British Isles soon after the last glaciation, directly from a white coloured refugium in the Iberian Peninsula, before colonising northern Europe. They would have followed a hitherto unknown post-glacial colonization route to the Isles over a westwards path of suitable habitat in now submerged land in the Bay of Biscay, thus not crossing Doggerland. As such, they inherited the white colour of their Iberian founders and maintained it through low gene flow with the mainland that prevents the import of rufous alleles. Thus, we contend that neutral processes probably explain this contrasting white colour compared to continental owls. With the barn owl being a top predator, we expect future research will show this unanticipated route was used by other species from its paleo community.


Asunto(s)
Estrigiformes , Animales , Color , Ecosistema , Europa (Continente) , Refugio de Fauna , Estrigiformes/genética
3.
Mol Ecol ; 31(5): 1375-1388, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34894026

RESUMEN

The study of insular populations was key in the development of evolutionary theory. The successful colonisation of an island depends on the geographic context, and specific characteristics of the organism and the island, but also on stochastic processes. As a result, apparently identical islands may harbour populations with contrasting histories. Here, we use whole genome sequences of 65 barn owls to investigate the patterns of inbreeding and genetic diversity of insular populations in the eastern Mediterranean Sea. We focus on Crete and Cyprus, islands with similar size, climate and distance to mainland, that provide natural replicates for a comparative analysis of the impacts of microevolutionary processes on isolated populations. We show that barn owl populations from each island have a separate origin, Crete being genetically more similar to other Greek islands and mainland Greece, and Cyprus more similar to the Levant. Further, our data show that their respective demographic histories following colonisation were also distinct. On the one hand, Crete harbours a small population and maintains very low levels of gene flow with neighbouring populations. This has resulted in low genetic diversity, strong genetic drift, increased relatedness in the population and remote inbreeding. Cyprus, on the other hand, appears to maintain enough gene flow with the mainland to avoid such an outcome. Our study provides a comparative population genomic analysis of the effects of neutral processes on a classical island-mainland model system. It provides empirical evidence for the role of stochastic processes in determining the fate of diverging isolated populations.


Asunto(s)
Estrigiformes , Animales , Evolución Biológica , Flujo Génico , Flujo Genético , Variación Genética/genética , Genómica , Estrigiformes/genética
4.
PLoS One ; 15(5): e0231163, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32369484

RESUMEN

Examination of genetic polymorphisms in outbred wild-living species provides insights into the evolution of complex systems. In higher vertebrates, the proopiomelanocortin (POMC) precursor gives rise to α-, ß-, and γ-melanocyte-stimulating hormones (MSH), which are involved in numerous physiological aspects. Genetic defects in POMC are linked to metabolic disorders in humans and animals. In the present study, we undertook an evolutionary genetic approach complemented with biochemistry to investigate the functional consequences of genetic polymorphisms in the POMC system of free-living outbred barn owl species (family Tytonidae) at the molecular level. Our phylogenetic studies revealed a striking correlation between a loss-of-function H9P mutation in the ß-MSH receptor-binding motif and an extension of a poly-serine stretch in γ3-MSH to ≥7 residues that arose in the barn owl group 6-8 MYA ago. We found that extension of the poly-serine stretches in the γ-MSH locus affects POMC precursor processing, increasing γ3-MSH production at the expense of γ2-MSH and resulting in an overall reduction of γ-MSH signaling, which may be part of a negative feedback mechanism. Extension of the γ3-MSH poly-serine stretches ≥7 further markedly increases peptide hormone stability in plasma, which is conserved in humans, and is likely relevant to its endocrine function. In sum, our phylogenetic analysis of POMC in wild living owls uncovered a H9P ß-MSH mutation subsequent to serine extension in γ3-MSH to 7 residues, which was then followed by further serine extension. The linked MSH mutations highlight the genetic plasticity enabled by the modular design of the POMC gene.


Asunto(s)
Mutación con Pérdida de Función , Repeticiones de Microsatélite , Proopiomelanocortina/genética , Proopiomelanocortina/metabolismo , Estrigiformes/clasificación , Secuencias de Aminoácidos , Animales , Animales no Consanguíneos , Sitios de Unión , Evolución Molecular , Retroalimentación Fisiológica , Técnicas de Genotipaje/veterinaria , Filogenia , Proopiomelanocortina/química , Estabilidad Proteica , Transducción de Señal , Estrigiformes/genética , Estrigiformes/metabolismo , Distribución Tisular
5.
Ecol Evol ; 10(5): 2284-2298, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32184981

RESUMEN

New genomic tools open doors to study ecology, evolution, and population genomics of wild animals. For the Barn owl species complex, a cosmopolitan nocturnal raptor, a very fragmented draft genome was assembled for the American species (Tyto furcata pratincola) (Jarvis et al. 2014). To improve the genome, we assembled de novo Illumina and Pacific Biosciences (PacBio) long reads sequences of its European counterpart (Tyto alba alba). This genome assembly of 1.219 Gbp comprises 21,509 scaffolds and results in a N50 of 4,615,526 bp. BUSCO (Universal Single-Copy Orthologs) analysis revealed an assembly completeness of 94.8% with only 1.8% of the genes missing out of 4,915 avian orthologs searched, a proportion similar to that found in the genomes of the zebra finch (Taeniopygia guttata) or the collared flycatcher (Ficedula albicollis). By mapping the reads of the female American barn owl to the male European barn owl reads, we detected several structural variants and identified 70 Mbp of the Z chromosome. The barn owl scaffolds were further mapped to the chromosomes of the zebra finch. In addition, the completeness of the European barn owl genome is demonstrated with 94 of 128 proteins missing in the chicken genome retrieved in the European barn owl transcripts. This improved genome will help future barn owl population genomic investigations.

6.
Gen Comp Endocrinol ; 283: 113224, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31323230

RESUMEN

Glucocorticoid hormones are important intermediates between an organism and its environment. They enable an organism to adjust its behavioural and physiological processes in response to environmental changes by binding to mineralocorticoid receptors (MR) and glucocorticoid receptors (GR) expressed in many tissues, including the integument. The regulation of glucocorticoids co-varies with melanin-based colouration in numerous species, an association that might result from pleiotropic effects of genes in the melanocortin system and evolve within a signalling context. Most studies have focused on the circulating levels of glucocorticoids disregarding the receptors that mediate their action, and that might partly account for the covariation between the regulation of stress and melanin-based colouration. We investigated the association of the expression levels of GR and MR genes with melanin-based colouration in the growing feathers of nestling barn owls (Tyto alba). We also explored the association between GR and MR expression levels and the expression of genes related to the melanocortin system and melanogenesis to better understand the origin of the link between the expression of receptors to which corticosterone binds and melanin-based colouration. Nestling barn owls displaying larger eumelanic black feather spots expressed GR and MR at lower levels than smaller-spotted individuals. However, we found that the expression of the GR and MR genes was positively rather than negatively correlated with the expression of genes involved in the deposition of melanin pigments at the time we sampled the nestlings. This provides mixed evidence of the association between melanin-based traits and MR and GR gene expression. The finding that the expression of GR and MR was positively associated with the expression of the PCSK2 gene (encoding one of the protein convertase responsible for the production of hormone peptide ACTH and α-MSH) suggests that the melanocortin system may be implicated in the establishment of the covariation between melanin-based colour and the expression of receptors to which glucocorticoids bind. However, further studies investigating the expression of melanin-based traits with stress-related endpoints at different time points of feather development will be necessary to understand better the proximate mechanism linking melanin-based traits with stress.


Asunto(s)
Regulación de la Expresión Génica , Glucocorticoides/genética , Pigmentación/genética , Receptores de Mineralocorticoides/genética , Estrés Fisiológico/genética , Estrigiformes/genética , Temperatura , Animales , Plumas/metabolismo , Femenino , Glucocorticoides/metabolismo , Masculino , Modelos Biológicos , Análisis de Componente Principal , Receptores de Mineralocorticoides/metabolismo
7.
Int J Mol Sci ; 18(12)2017 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-29206201

RESUMEN

Modular genetic systems and networks have complex evolutionary histories shaped by selection acting on single genes as well as on their integrated function within the network. However, uncovering molecular coevolution requires the detection of coevolving sites in sequences. Detailed knowledge of the functions of each gene in the system is also necessary to identify the selective agents driving coevolution. Using recently developed computational tools, we investigated the effect of positive selection on the coevolution of ten major genes in the melanocortin system, responsible for multiple physiological functions and human diseases. Substitutions driven by positive selection at the melanocortin-1-receptor (MC1R) induced more coevolutionary changes on the system than positive selection on other genes in the system. Contrarily, selection on the highly pleiotropic POMC gene, which orchestrates the activation of the different melanocortin receptors, had the lowest coevolutionary influence. MC1R and possibly its main function, melanin pigmentation, seems to have influenced the evolution of the melanocortin system more than functions regulated by MC2-5Rs such as energy homeostasis, glucocorticoid-dependent stress and anti-inflammatory responses. Although replication in other regulatory systems is needed, this suggests that single functional aspects of a genetic network or system can be of higher importance than others in shaping coevolution among the genes that integrate it.


Asunto(s)
Melanocortinas/metabolismo , Receptor de Melanocortina Tipo 1/metabolismo , Animales , Evolución Molecular , Redes Reguladoras de Genes/fisiología , Melanocortinas/genética , Filogenia , Receptor de Melanocortina Tipo 1/genética , Selección Genética/genética
8.
Evolution ; 71(10): 2469-2483, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28861897

RESUMEN

The mean phenotypic effects of a discovered variant help to predict major aspects of the evolution and inheritance of a phenotype. However, differences in the phenotypic variance associated to distinct genotypes are often overlooked despite being suggestive of processes that largely influence phenotypic evolution, such as interactions between the genotypes with the environment or the genetic background. We present empirical evidence for a mutation at the melanocortin-1-receptor gene, a major vertebrate coloration gene, affecting phenotypic variance in the barn owl, Tyto alba. The white MC1R allele, which associates with whiter plumage coloration, also associates with a pronounced phenotypic and additive genetic variance for distinct color traits. Contrarily, the rufous allele, associated with a rufous coloration, relates to a lower phenotypic and additive genetic variance, suggesting that this allele may be epistatic over other color loci. Variance differences between genotypes entailed differences in the strength of phenotypic and genetic associations between color traits, suggesting that differences in variance also alter the level of integration between traits. This study highlights that addressing variance differences of genotypes in wild populations provides interesting new insights into the evolutionary mechanisms and the genetic architecture underlying the phenotype.


Asunto(s)
Alelos , Evolución Molecular , Variación Genética , Pigmentación/genética , Receptor de Melanocortina Tipo 1/genética , Estrigiformes/genética , Animales , Epistasis Genética , Plumas/metabolismo , Antecedentes Genéticos , Genotipo , Fenotipo
9.
Gen Comp Endocrinol ; 250: 36-45, 2017 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-28457648

RESUMEN

Knowledge of how and why secondary sexual characters are associated with sex hormones is important to understand their signalling function. Such a link can occur if i) testosterone participates in the elaboration of sex-traits, ii) the display of an ornament triggers behavioural response in conspecifics that induce a rise in testosterone, or iii) genes implicated in the elaboration of a sex-trait pleiotropically regulate testosterone physiology. To evaluate the origin of the co-variation between melanism and testosterone, we measured this hormone and the expression of enzymes involved in its metabolism in feathers of barn owl (Tyto alba) nestlings at the time of melanogenesis and in adults outside the period of melanogenesis. Male nestlings displaying smaller black feather spots had higher levels of circulating testosterone, potentially suggesting that testosterone could block the production of eumelanin pigments, or that genes involved in the production of small spots pleiotropically regulate testosterone production. In contrast, the enzyme 5α-reductase, that metabolizes testosterone to DHT, was more expressed in feathers of reddish-brown than light-reddish nestlings. This is consistent with the hypothesis that testosterone might be involved in the expression of reddish-brown pheomelanic pigments. In breeding adults, male barn owls displaying smaller black spots had higher levels of circulating testosterone, whereas in females the opposite result was detected during the rearing period, but not during incubation. The observed sex- and age-specific co-variations between black spottiness and testosterone in nestling and adult barn owls may not result from testosterone-dependent melanogenesis, but from melanogenic genes pleiotropically regulating testosterone, or from colour-specific life history strategies that influence testosterone levels.


Asunto(s)
Plumas/metabolismo , Regulación de la Expresión Génica , Melaninas/metabolismo , Pigmentación/genética , Estrigiformes/genética , Testosterona/sangre , Animales , Cruzamiento , Colestenona 5 alfa-Reductasa/genética , Colestenona 5 alfa-Reductasa/metabolismo , Receptor alfa de Estrógeno/genética , Receptor alfa de Estrógeno/metabolismo , Femenino , Masculino , Comportamiento de Nidificación , Fenotipo , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo , Testosterona/metabolismo
10.
Mol Ecol ; 26(1): 259-276, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27664794

RESUMEN

The melanocortin-1 receptor (MC1R) gene influences coloration by altering the expression of genes acting downstream in the melanin synthesis. MC1R belongs to the melanocortin system, a genetic network coding for the ligands that regulate MC1R and other melanocortin receptors controlling different physiological and behavioural traits. The impact of MC1R variants on these regulatory melanocortin genes was never considered, even though MC1R mutations could alter the influence of these genes on coloration (e.g. by decreasing MC1R response to melanocortin ligands). Using barn owl growing feathers, we investigated the differences between MC1R genotypes in the (co)expression of six melanocortin and nine melanogenic-related genes and in the association between melanocortin gene expression and phenotype (feather pheomelanin content). Compared to the MC1R rufous allele, responsible for reddish coloration, the white allele was not only associated with an expected lower expression of melanogenic-related genes (TYR, TYRP1, OCA2, SLC45A2, KIT, DCT) but also with a lower MC1R expression and a higher expression of ASIP, the MC1R antagonist. More importantly, the expression of PCSK2, responsible for the maturation of the MC1R agonist, α-melanocyte-stimulating hormone, was positively related to pheomelanin content in MC1R white homozygotes but not in individuals carrying the MC1R rufous allele. These findings indicate that MC1R mutations not only alter the expression of melanogenic-related genes but also the association between coloration and the expression of melanocortin genes upstream of MC1R. This suggests that MC1R mutations can modulate the regulation of coloration by the pleiotropic melanocortin genes, potentially decoupling the often-observed associations between coloration and other phenotypes.


Asunto(s)
Melanocortinas/genética , Pigmentación/genética , Receptor de Melanocortina Tipo 1/genética , Estrigiformes/genética , Alelos , Animales , Plumas , Redes Reguladoras de Genes , Genotipo
11.
R Soc Open Sci ; 3(9): 160226, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27703688

RESUMEN

Elevation gradients impose large differences in abiotic and biotic conditions over short distances, in turn, likely driving differences in gene expression more than would genetic variation per se, as natural selection and drift are less likely to fix alleles at such a narrow spatial scale. As elevation increases, the pressure exerted on plants by herbivores and on arthropod herbivores by predators decreases, and organisms spanning the elevation gradient are thus expected to show lower levels of defence at high elevation. The alternative hypothesis, based on the optimal defence theory, is that defence allocation should be higher in low-resource habitats such as those at high elevation, due to higher costs associated with tissue replacement. In this study, we analyse variation with elevation in (i) defence compound content in the plant Lotus corniculatus and (ii) gene expression associated with defence against predators in the specific phytophagous moth, Zygaena filipendulae. Both species produce cyanogenic glycosides (CNglcs) such as lotaustralin and linamarin as defence mechanisms, with the moth, in addition, being able to sequester CNglcs from its host plant. Specifically, we tested the assumption that the defence-associated phenotype in plants and the gene expression in the insect herbivore should covary between low- and high-elevation environments. We found that L. corniculatus accumulated more CNglcs at high elevation, a result in agreement with the optimal defence theory. By contrast, we found that the levels of expression in the defence genes of Z. filipendulae larvae were not related to the CNglc content of their host plant. Overall, expression levels were not correlated with elevation either, with the exception of the UGT33A1 gene, which showed a marginally significant trend towards higher expression at high elevation when using a simple statistical framework. These results suggest that the defence phenotype of plants against herbivores, and subsequent herbivore sequestration machineries and de novo production, are based on a complex network of interactions.

12.
Evolution ; 70(1): 140-53, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26773815

RESUMEN

Uncovering the genetic basis of phenotypic variation and the population history under which it established is key to understand the trajectories along which local adaptation evolves. Here, we investigated the genetic basis and evolutionary history of a clinal plumage color polymorphism in European barn owls (Tyto alba). Our results suggest that barn owls colonized the Western Palearctic in a ring-like manner around the Mediterranean and meet in secondary contact in Greece. Rufous coloration appears to be linked to a recently evolved nonsynonymous-derived variant of the melanocortin 1 receptor (MC1R) gene, which according to quantitative genetic analyses evolved under local adaptation during or following the colonization of Central Europe. Admixture patterns and linkage disequilibrium between the neutral genetic background and color found exclusively within the secondary contact zone suggest limited introgression at secondary contact. These results from a system reminiscent of ring species provide a striking example of how local adaptation can evolve from derived genetic variation.


Asunto(s)
Proteínas Aviares/genética , Repeticiones de Microsatélite , Pigmentación , Estrigiformes/fisiología , Adaptación Biológica , Animales , Proteínas Aviares/metabolismo , Europa (Continente) , Plumas/fisiología , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo
13.
Mol Ecol ; 24(11): 2794-808, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25857339

RESUMEN

Variants of the melanocortin-1 receptor (MC1R) gene result in abrupt, naturally selected colour morphs. These genetic variants may differentially affect sexual dimorphism if one morph is naturally selected in the two sexes but another morph is naturally or sexually selected only in one of the two sexes (e.g. to confer camouflage in reproductive females or confer mating advantage in males). Therefore, the balance between natural and sexual selections can differ between MC1R variants, as suggest studies showing interspecific correlations between sexual dimorphism and the rate of nonsynonymous vs. synonymous amino acid substitutions at the MC1R. Surprisingly, how MC1R is related to within-species sexual dimorphism, and thereby to sex-specific selection, has not yet been investigated. We tackled this issue in the barn owl (Tyto alba), a species showing pronounced variation in the degree of reddish pheomelanin-based coloration and in the number and size of black feather spots. We found that a valine (V)-to-isoleucine (I) substitution at position 126 explains up to 30% of the variation in the three melanin-based colour traits and in feather melanin content. Interestingly, MC1R genotypes also differed in the degree of sexual colour dimorphism, with individuals homozygous for the II MC1R variant being 2 times redder and 2.5 times less sexually dimorphic than homozygous individuals for the VV MC1R variant. These findings support that MC1R interacts with the expression of sexual dimorphism and suggest that a gene with major phenotypic effects and weakly influenced by variation in body condition can participate in sex-specific selection processes.


Asunto(s)
Pigmentación/genética , Receptor de Melanocortina Tipo 1/genética , Caracteres Sexuales , Estrigiformes/genética , Alelos , Sustitución de Aminoácidos , Animales , Color , Plumas , Femenino , Variación Genética , Genotipo , Masculino , Melaninas/análisis , Análisis de Secuencia de ADN , Suiza
14.
Oecologia ; 178(4): 1113-23, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25834999

RESUMEN

Genetic color polymorphism is widespread in nature. There is an increasing interest in understanding the adaptive value of heritable color variation and trade-off resolution by differently colored individuals. Melanin-based pigmentation is often associated with variation in many different life history traits. These associations have recently been suggested to be the outcome of pleiotropic effects of the melanocortin system. Although pharmacological research supports that MC1R, a gene with a major role in vertebrate pigmentation, has important immunomodulatory effects, evidence regarding pleiotropy at MC1R in natural populations is still under debate. We experimentally assessed whether MC1R-based pigmentation covaries with both inflammatory and humoral immune responses in the color polymorphic Eleonora's falcon. By means of a cross-fostering experiment, we disentangled potential genetic effects from environmental effects on the covariation between coloration and immunity. Variation in both immune responses was primarily due to genetic factors via the nestlings' MC1R-related color genotype/phenotype, although environmental effects via the color morph of the foster father also had an influence. Overall, dark nestlings had lower immune responses than pale ones. The effect of the color morph of the foster father was also high, but in the opposite direction, and nestlings raised by dark eumelanic foster fathers had higher immune responses than those raised by pale foster fathers. Although we cannot completely discard alternative explanations, our results suggest that MC1R might influence immunity in this species. Morph-specific variation in immunity as well as pathogen pressure may therefore contribute to the long-term maintenance of genetic color polymorphism in natural populations.


Asunto(s)
Inmunidad Adaptativa/genética , Falconiformes/inmunología , Inmunidad Innata/genética , Pigmentación/genética , Receptor de Melanocortina Tipo 1/genética , Animales , Color , Ambiente , Falconiformes/anatomía & histología , Falconiformes/genética , Humanos , Fenotipo , Polimorfismo Genético , Rapaces
15.
Mol Ecol ; 22(19): 4915-30, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24033481

RESUMEN

The adaptive function of melanin-based coloration is a long-standing debate. A recent genetic model suggested that pleiotropy could account for covariations between pigmentation, behaviour, morphology, physiology and life history traits. We explored whether the expression levels of genes belonging to the melanocortin system (MC1R, POMC, PC1/3, PC2 and the antagonist ASIP), which have many pleiotropic effects, are associated with melanogenesis (through variation in the expression of the genes MITF, SLC7A11, TYR, TYRP1) and in turn melanin-based coloration. We considered the tawny owl (Strix aluco) because individuals vary continuously from light to dark reddish, and thus, colour variation is likely to stem from differences in the levels of gene expression. We measured gene expression in feather bases collected in nestlings at the time of melanin production. As expected, the melanocortin system was associated with the expression of melanogenic genes and pigmentation. Offspring of darker reddish fathers expressed PC1/3 to lower levels but tended to express PC2 to higher levels. The convertase enzyme PC1/3 cleaves the POMC prohormone to obtain ACTH, while the convertase enzyme PC2 cleaves ACTH to produce α-melanin-stimulating hormone (α-MSH). ACTH regulates glucocorticoids, hormones that modulate stress responses, while α-MSH induces eumelanogenesis. We therefore conclude that the melanocortin system, through the convertase enzymes PC1/3 and PC2, may account for part of the interindividual variation in melanin-based coloration in nestling tawny owls. Pleiotropy may thus account for the covariation between phenotypic traits involved in social interactions (here pigmentation) and life history, morphology, behaviour and physiology.


Asunto(s)
Pleiotropía Genética , Melaninas/biosíntesis , Pigmentación/genética , Estrigiformes/genética , Animales , Proteínas Aviares/genética , Tamaño de la Nidada , Plumas , Femenino , Regulación de la Expresión Génica , Masculino , Datos de Secuencia Molecular , Estrigiformes/fisiología
16.
Front Zool ; 10(1): 42, 2013 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-23886007

RESUMEN

BACKGROUND: Intra-specific variation in melanocyte pigmentation, common in the animal kingdom, has caught the eye of naturalists and biologists for centuries. In vertebrates, dark, eumelanin pigmentation is often genetically determined and associated with various behavioral and physiological traits, suggesting that the genes involved in melanism have far reaching pleiotropic effects. The mechanisms linking these traits remain poorly understood, and the potential involvement of developmental processes occurring in the brain early in life has not been investigated. We examined the ontogeny of rapid eye movement (REM) sleep, a state involved in brain development, in a wild population of barn owls (Tyto alba) exhibiting inter-individual variation in melanism and covarying traits. In addition to sleep, we measured melanistic feather spots and the expression of a gene in the feather follicles implicated in melanism (PCSK2). RESULTS: As in mammals, REM sleep declined with age across a period of brain development in owlets. In addition, inter-individual variation in REM sleep around this developmental trajectory was predicted by variation in PCSK2 expression in the feather follicles, with individuals expressing higher levels exhibiting a more precocial pattern characterized by less REM sleep. Finally, PCSK2 expression was positively correlated with feather spotting. CONCLUSIONS: We demonstrate that the pace of brain development, as reflected in age-related changes in REM sleep, covaries with the peripheral activation of the melanocortin system. Given its role in brain development, variation in nestling REM sleep may lead to variation in adult brain organization, and thereby contribute to the behavioral and physiological differences observed between adults expressing different degrees of melanism.

17.
Semin Cell Dev Biol ; 24(6-7): 594-608, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23665152

RESUMEN

Establishing the links between phenotype and genotype is of great importance for resolving key questions about the evolution, maintenance and adaptive function of phenotypic variation. Bird colouration is one of the most studied systems to investigate the role of natural and sexual selection in the evolution of phenotypic diversity. Given the recent advances in molecular tools that allow discovering genetic polymorphisms and measuring gene and protein expression levels, it is timely to review the literature on the genetics of bird colouration. The present study shows that melanin-based colour phenotypes are often associated with mutations at melanogenic genes. Differences in melanin-based colouration are caused by switches of eumelanin to pheomelanin production or by changes in feather keratin structure, melanoblast migration and differentiation, as well as melanosome structure. Similar associations with other types of colourations are difficult to establish, because our knowledge about the molecular genetics of carotenoid-based and structural colouration is quasi inexistent. This discrepancy stems from the fact that only melanin-based colouration shows pronounced heritability estimates, i.e. the resemblance between related individuals is usually mainly explained by genetic factors. In contrast, the expression of carotenoid-based colouration is phenotypically plastic with a high sensitivity to variation in environmental conditions. It therefore appears that melanin-based colour traits are prime systems to understand the genetic basis of phenotypic variation. In this context, birds have a great potential to bring us to new frontiers where many exciting discoveries will be made on the genetics of phenotypic traits, such as colouration. In this context, a major goal of our review is to suggest a number of exciting future avenues.


Asunto(s)
Aves/genética , Pigmentación/genética , Animales , Fenotipo
18.
Oecologia ; 166(4): 913-21, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21384176

RESUMEN

Knowledge of the hormonal pathway controlling genotype-specific norms of reaction would shed light on the ecological factors to which each genotype is adapted. Environmentally mediated changes in the sign and magnitude of covariations between heritable melanin-based colouration and fitness components are frequent, revealing that extreme melanin-based phenotypes can display different physiological states depending on the environment. Yet, the hormonal mechanism underlying this phenomenon is poorly understood. One novel hypothesis proposes that these covariations stem from pleiotropic effects of the melanocortin system. Melanocortins are post-translationally modified bioactive peptides derived from the POMC prohormone that are involved in melanogenesis, anti-inflammation, energy homeostasis and stress responses. Thus, differential regulation of fitness components in relation to environmental factors by pale and dark melanic individuals may be due to colour-specific regulation of the POMC prohormone. Accordingly, we found that the degree of reddish melanic colouration was negatively correlated with blood circulating levels of the POMC prohormone in female tawny owls (Strix aluco) rearing a brood for which the size was experimentally reduced, but not when enlarged, and in females located in rich but not in poor territories. Our findings support the hypothesis that the widespread links between melanin-based colouration and fitness components may be mediated, at least in part, by the melanocortin system.


Asunto(s)
Ambiente , Pigmentación , Pigmentos Biológicos/metabolismo , Proopiomelanocortina/sangre , Estrigiformes/sangre , Animales , Tamaño de la Nidada , Femenino , Pleiotropía Genética
19.
Eur J Pharmacol ; 660(1): 226-33, 2011 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-21300052

RESUMEN

The melanocortin system is implicated in the expression of many phenotypic traits. Activation of the melanocortin MC(1) receptor by melanocortin hormones induces the production of brown/black eumelanic pigments, while activation of the four other melanocortin receptors affects other physiological and behavioural functions including stress response, energy homeostasis, anti-inflammatory and sexual activity, aggressiveness and resistance to oxidative stress. We recently proposed the hypothesis that some melanocortin-physiological and -behavioural traits are correlated within individuals. This hypothesis predicts that the degree of eumelanin production may, in some cases, be associated with the regulation of glucocorticoids, immunity, resistance to oxidative stress, energy homeostasis, sexual activity, and aggressiveness. A review of the zoological literature and detailed experimental studies in a free-living population of barn owls (Tyto alba) showed that indeed melanic coloration is often correlated with the predicted physiological and behavioural traits. Support for predictions of the hypothesis that covariations between coloration and other phenotypic traits stem from pleiotropic effects of the melanocortin system raises a number of theoretical and empirical issues from evolutionary and pharmacological point of views.


Asunto(s)
Conducta , Melanocortinas/metabolismo , Melanosis/metabolismo , Fenómenos Fisiológicos , Animales , Conducta/efectos de los fármacos , Humanos , Melanocortinas/genética , Melanosis/genética , Fenotipo , Fenómenos Fisiológicos/efectos de los fármacos , Estrigiformes/genética , Estrigiformes/metabolismo , Estrigiformes/fisiología
20.
J Anim Ecol ; 78(3): 608-16, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19175442

RESUMEN

1. Melanin pigments provide the most widespread source of coloration in vertebrates, but the adaptive function of such traits remains poorly known. 2. In a wild population of tawny owls (Strix aluco), we investigated the relationships between plumage coloration, which varies continuously from dark to pale reddish, and the strength and cost of an induced immune response. 3. The degree of reddishness in tawny owl feather colour was positively correlated with the concentration of phaeomelanin and eumelanin pigments, and plumage coloration was highly heritable (h(2) = 0.93). No carotenoids were detected in the feathers. 4. In mothers, the degree of melanin-based coloration was associated with antibody production against a vaccine, with dark reddish females maintaining a stronger level of antibody for a longer period of time compared to pale reddish females, but at a cost in terms of greater loss of body mass. 5. A cross-fostering experiment showed that, independent of maternal coloration, foster chicks reared by vaccinated mothers were lighter than those reared by nonvaccinated mothers. Hence, even though dark reddish mothers suffered a stronger immune cost than pale reddish mothers, this asymmetric cost was not translated to offspring growth. 6. Our study suggests that different heritable melanin-based colorations are associated with alternative strategies to resist parasite attacks, with dark reddish individuals investing more resources towards the humoral immune response than lightly reddish conspecifics.


Asunto(s)
Metabolismo Energético/inmunología , Melaninas/genética , Melaninas/fisiología , Pigmentos Biológicos/genética , Pigmentos Biológicos/fisiología , Estrigiformes/inmunología , Animales , Vacuna contra Difteria, Tétanos y Tos Ferina/inmunología , Plumas/fisiología , Femenino , Enfermedades Parasitarias en Animales/genética , Enfermedades Parasitarias en Animales/inmunología , Vacunas contra Poliovirus/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA