Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Base de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Cells ; 12(13)2023 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-37443731

RESUMEN

Heart regeneration after myocardial infarction (MI) using human stem cell-derived cardiomyocytes (CMs) is rapidly accelerating with large animal and human clinical trials. However, vascularization methods to support the engraftment, survival, and development of implanted CMs in the ischemic environment of the infarcted heart remain a key and timely challenge. To this end, we developed a dual remuscularization-revascularization therapy that is evaluated in a rat model of ischemia-reperfusion MI. This study details the differentiation of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) for engineering cardiac tissue containing patterned engineered vessels 400 µm in diameter. Vascularized engineered human myocardial tissues (vEHMs) are cultured in static conditions or perfused in vitro prior to implantation and evaluated after two weeks. Immunohistochemical staining indicates improved engraftment of hiPSC-CMs in in vitro-perfused vEHMs with greater expression of SMA+ vessels and evidence of inosculation. Three-dimensional vascular reconstructions reveal less tortuous and larger intra-implant vessels, as well as an improved branching hierarchy in in vitro-perfused vEHMs relative to non-perfused controls. Exploratory RNA sequencing of explanted vEHMs supports the hypothesis that co-revascularization impacts hiPSC-CM development in vivo. Our approach provides a strong foundation to enhance vEHM integration, develop hierarchical vascular perfusion, and maximize hiPSC-CM engraftment for future regenerative therapy.


Asunto(s)
Células Madre Pluripotentes Inducidas , Infarto del Miocardio , Humanos , Ratas , Animales , Arteriolas/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Infarto del Miocardio/terapia , Infarto del Miocardio/metabolismo , Perfusión
2.
Bioengineering (Basel) ; 10(5)2023 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-37237658

RESUMEN

Despite the overwhelming use of cellularized therapeutics in cardiac regenerative engineering, approaches to biomanufacture engineered cardiac tissues (ECTs) at clinical scale remain limited. This study aims to evaluate the impact of critical biomanufacturing decisions-namely cell dose, hydrogel composition, and size-on ECT formation and function-through the lens of clinical translation. ECTs were fabricated by mixing human induced pluripotent stem-cell-derived cardiomyocytes (hiPSC-CMs) and human cardiac fibroblasts into a collagen hydrogel to engineer meso-(3 × 9 mm), macro- (8 × 12 mm), and mega-ECTs (65 × 75 mm). Meso-ECTs exhibited a hiPSC-CM dose-dependent response in structure and mechanics, with high-density ECTs displaying reduced elastic modulus, collagen organization, prestrain development, and active stress generation. Scaling up, cell-dense macro-ECTs were able to follow point stimulation pacing without arrhythmogenesis. Finally, we successfully fabricated a mega-ECT at clinical scale containing 1 billion hiPSC-CMs for implantation in a swine model of chronic myocardial ischemia to demonstrate the technical feasibility of biomanufacturing, surgical implantation, and engraftment. Through this iterative process, we define the impact of manufacturing variables on ECT formation and function as well as identify challenges that must still be overcome to successfully accelerate ECT clinical translation.

3.
Biomaterials ; 297: 122110, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37062214

RESUMEN

Obesity has been linked with numerous health issues as well as an increased risk of breast cancer. Although effects of direct obesity in patient outcomes is widely studied, effects of exposure to obesity-related systemic influences in utero have been overlooked. In this study, we investigated the effect of multigenerational obesity on epithelial cell migration and invasion using decellularized breast tissues explanted from normal female mouse pups from a diet induced multigenerational obesity mouse model. We first studied the effect of multigenerational diet on the mechanical properties, adipocyte size, and collagen structure of these mouse breast tissues, and then, examined the migration and invasion behavior of normal (KTB-21) and cancerous (MDA-MB-231) human mammary epithelial cells on the decellularized matrices from each diet group. Breast tissues of mice whose dams had been fed with high-fat diet exhibited larger adipocytes and thicker and curvier collagen fibers, but only slightly elevated elastic modulus and inflammatory cytokine levels. MDA-MB-231 cancer cell motility and invasion were significantly greater on the decellularized matrices from mice whose dams were fed with high-fat diet. A similar trend was observed with normal KTB-21 cells. Our results showed that the collagen curvature was the dominating factor on this enhanced motility and stretching the matrices to equalize the collagen fiber linearity of the matrices ameliorated the observed increase in cell migration and invasion in the mice that were exposed to a high-fat diet in utero. Previous studies indicated an increase in serum leptin concentration for those children born to an obese mother. We generated extracellular matrices using primary fibroblasts exposed to various concentrations of leptin. This produced curvier ECM and increased breast cancer cell motility for cells seeded on the decellularized ECM generated with increasing leptin concentration. Our study shows that exposure to obesity in utero is influential in determining the extracellular matrix structure, and that the resultant change in collagen curvature is a critical factor in regulating the migration and invasion of breast cancer cells.


Asunto(s)
Neoplasias de la Mama , Obesidad Materna , Niño , Femenino , Humanos , Ratones , Embarazo , Animales , Leptina , Línea Celular Tumoral , Colágeno/farmacología , Matriz Extracelular , Células Epiteliales , Obesidad , Fenotipo
4.
Polymers (Basel) ; 14(21)2022 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-36365565

RESUMEN

Myocardial infarction is a leading cause of death worldwide and has severe consequences including irreversible damage to the myocardium, which can lead to heart failure. Cardiac tissue engineering aims to re-engineer the infarcted myocardium using tissues made from human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) to regenerate heart muscle and restore contractile function via an implantable epicardial patch. The current limitations of this technology include both biomanufacturing challenges in maintaining tissue integrity during implantation and biological challenges in inducing cell alignment, maturation, and coordinated electromechanical function, which, when overcome, may be able to prevent adverse cardiac remodeling through mechanical support in the injured heart to facilitate regeneration. Polymer scaffolds serve to mechanically reinforce both engineered and host tissues. Here, we introduce a novel biodegradable, customizable scaffold composed of wet-spun polycaprolactone (PCL) microfibers to strengthen engineered tissues and provide an anisotropic mechanical environment to promote engineered tissue formation. We developed a wet-spinning process to produce consistent fibers which are then collected on an automated mandrel that precisely controls the angle of intersection of fibers and their spacing to generate mechanically anisotropic scaffolds. Through optimization of the wet-spinning process, we tuned the fiber diameter to 339 ± 31 µm and 105 ± 9 µm and achieved a high degree of fidelity in the fiber structure within the scaffold (fiber angle within 1.8° of prediction). Through degradation and mechanical testing, we demonstrate the ability to maintain scaffold mechanical integrity as well as tune the mechanical environment of the scaffold through structure (Young's modulus of 120.8 ± 1.90 MPa for 0° scaffolds, 60.34 ± 11.41 MPa for 30° scaffolds, 73.59 ± 3.167 MPa for 60° scaffolds, and 49.31 ± 6.90 MPa for 90° scaffolds), while observing decreased hysteresis in angled vs. parallel scaffolds. Further, we embedded the fibrous PCL scaffolds in a collagen hydrogel mixed with hiPSC-CMs to form engineered cardiac tissue with high cell survival, tissue compaction, and active contractility of the hiPSC-CMs. Through this work, we develop and optimize a versatile biomanufacturing process to generate customizable PCL fibrous scaffolds which can be readily utilized to guide engineered tissue formation and function.

5.
ACS Appl Bio Mater ; 5(6): 2461-2480, 2022 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-35623101

RESUMEN

Despite numerous advances in treatments for cardiovascular disease, heart failure (HF) remains the leading cause of death worldwide. A significant factor contributing to the progression of cardiovascular diseases into HF is the loss of functioning cardiomyocytes. The recent growth in the field of cardiac tissue engineering has the potential to not only reduce the downstream effects of injured tissues on heart function and longevity but also re-engineer cardiac function through regeneration of contractile tissue. One leading strategy to accomplish this is via a cellularized patch that can be surgically implanted onto a diseased heart. A key area of this field is the use of tissue scaffolds to recapitulate the mechanical and structural environment of the native heart and thus promote engineered myocardium contractility and function. While the strong mechanical properties and anisotropic structural organization of the native heart can be largely attributed to a robust extracellular matrix, similar strength and organization has proven to be difficult to achieve in cultured tissues. Polycaprolactone (PCL) is an emerging contender to fill these gaps in fabricating scaffolds that mimic the mechanics and structure of the native heart. In the field of cardiovascular engineering, PCL has recently begun to be studied as a scaffold for regenerating the myocardium due to its facile fabrication, desirable mechanical, chemical, and biocompatible properties, and perhaps most importantly, biodegradability, which make it suitable for regenerating and re-engineering function to the heart after disease or injury. This review focuses on the application of PCL as a scaffold specifically in myocardium repair and regeneration and outlines current fabrication approaches, properties, and possibilities of PCL incorporation into engineered myocardium, as well as provides suggestions for future directions and a roadmap toward clinical translation of this technology.


Asunto(s)
Poliésteres , Andamios del Tejido , Miocitos Cardíacos , Poliésteres/química , Regeneración , Andamios del Tejido/química
6.
Biofabrication ; 13(4)2021 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-34186522

RESUMEN

Mimicking the native three-dimensional microenvironment is of crucial importance when biofabricating a new healthcare material. One aspect of the native tissue that is often omitted when designing a suitable scaffold is its anisotropy. Not only is matching native mechanical properties important when designing implantable scaffolds or healthcare materials, but matching physiological structure is also important as many cell populations respond differently to fiber orientation. Therefore, novel aligned electrospun scaffolds with varying fiber angles and spacing of bundles were created and mechanically characterized. Through controlling the angle between the fibers in each layer of the scaffold, a range of different physiological anisotropic mechanical properties were achieved that encompasses values found in native tissues. Extrapolation of this mechanical data allowed for any native tissue's anisotropic Young's modulus to be mimicked by electrospinning fibers at a particular angle. These electrospun scaffolds were then incorporated with cell-laden hydrogels to create hybrid structures that contain the benefits of both scaffolding techniques with the ability to encapsulate cells in the hydrogel. To conclude, this study develops a novel bundled fiber scaffold that was architected to yield anisotropic properties matching native tissues.


Asunto(s)
Ingeniería de Tejidos , Andamios del Tejido , Anisotropía , Materiales Biocompatibles , Hidrogeles
7.
Bioact Mater ; 6(7): 2198-2220, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33553810

RESUMEN

The mechanical environment and anisotropic structure of the heart modulate cardiac function at the cellular, tissue and organ levels. During myocardial infarction (MI) and subsequent healing, however, this landscape changes significantly. In order to engineer cardiac biomaterials with the appropriate properties to enhance function after MI, the changes in the myocardium induced by MI must be clearly identified. In this review, we focus on the mechanical and structural properties of the healthy and infarcted myocardium in order to gain insight about the environment in which biomaterial-based cardiac therapies are expected to perform and the functional deficiencies caused by MI that the therapy must address. From this understanding, we discuss epicardial therapies for MI inspired by the mechanics and anisotropy of the heart focusing on passive devices, which feature a biomaterials approach, and active devices, which feature robotic and cellular components. Through this review, a detailed analysis is provided in order to inspire further development and translation of epicardial therapies for MI.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA