Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Base de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 2090, 2023 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-37045818

RESUMEN

While the regional distribution of non-native species is increasingly well documented for some taxa, global analyses of non-native species in local assemblages are still missing. Here, we use a worldwide collection of assemblages from five taxa - ants, birds, mammals, spiders and vascular plants - to assess whether the incidence, frequency and proportions of naturalised non-native species depend on type and intensity of land use. In plants, assemblages of primary vegetation are least invaded. In the other taxa, primary vegetation is among the least invaded land-use types, but one or several other types have equally low levels of occurrence, frequency and proportions of non-native species. High land use intensity is associated with higher non-native incidence and frequency in primary vegetation, while intensity effects are inconsistent for other land-use types. These findings highlight the potential dual role of unused primary vegetation in preserving native biodiversity and in conferring resistance against biological invasions.


Asunto(s)
Hormigas , Ecosistema , Animales , Especies Introducidas , Incidencia , Biodiversidad , Mamíferos
2.
Nat Ecol Evol ; 5(3): 322-329, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33495593

RESUMEN

The unabating rise in the number of species introduced outside of their native range makes predicting the spread of alien species an urgent challenge. Most predictions use models of the ecological niche of a species to identify suitable areas for invasion, but these predictions may have limited accuracy. Here, using the global alien avifauna, we demonstrate an alternative approach for predicting alien spread based on the environmental resistance of the landscape. This approach does not require any information on the ecological niche of the invading species and, instead, uses gradients of biotic similarity among native communities in the invaded region to predict the most likely routes of spread. We show that environmental resistance predicts patterns of spread better than a null model of random dispersal or a model based on climate matching to the native range of each species. Applying this approach to simulate future spread reveals major regional differences in projected invasion risk, shaped by proximity to existing invasion hotspots as well as gradients in environmental resistance. Our results show how environmental resistance may provide a general and complementary approach for predicting invasion risk that can be rapidly deployed even when information on the niche or the identity of potential invaders is unknown.


Asunto(s)
Ecosistema , Especies Introducidas , Clima
3.
Nature ; 571(7763): 103-106, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31217580

RESUMEN

Human-mediated translocation of species to areas beyond their natural distribution (which results in 'alien' populations1) is a key signature of the Anthropocene2, and is a primary global driver of biodiversity loss and environmental change3. Stemming the tide of invasions requires understanding why some species fail to establish alien populations, and others succeed. To achieve this, we need to integrate the effects of features of the introduction site, the species introduced and the specific introduction event. Determining which, if any, location-level factors affect the success of establishment has proven difficult, owing to the multiple spatial, temporal and phylogenetic axes along which environmental variation may influence population survival. Here we apply Bayesian hierarchical regression analysis to a global spatially and temporally explicit database of introduction events of alien birds4 to show that environmental conditions at the introduction location, notably climatic suitability and the presence of other groups of alien species, are the primary determinants of successful establishment. Species-level traits and the size of the founding population (propagule pressure) exert secondary, but important, effects on success. Thus, current trajectories of anthropogenic environmental change will most probably facilitate future incursions by alien species, but predicting future invasions will require the integration of multiple location-, species- and event-level characteristics.


Asunto(s)
Biodiversidad , Aves , Mapeo Geográfico , Internacionalidad , Especies Introducidas/estadística & datos numéricos , Migración Animal , Animales , Aves/clasificación , Actividades Humanas , Filogenia , Densidad de Población , Dinámica Poblacional , Probabilidad , Especificidad de la Especie
4.
Proc Natl Acad Sci U S A ; 115(10): E2264-E2273, 2018 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-29432147

RESUMEN

Our ability to predict the identity of future invasive alien species is largely based upon knowledge of prior invasion history. Emerging alien species-those never encountered as aliens before-therefore pose a significant challenge to biosecurity interventions worldwide. Understanding their temporal trends, origins, and the drivers of their spread is pivotal to improving prevention and risk assessment tools. Here, we use a database of 45,984 first records of 16,019 established alien species to investigate the temporal dynamics of occurrences of emerging alien species worldwide. Even after many centuries of invasions the rate of emergence of new alien species is still high: One-quarter of first records during 2000-2005 were of species that had not been previously recorded anywhere as alien, though with large variation across taxa. Model results show that the high proportion of emerging alien species cannot be solely explained by increases in well-known drivers such as the amount of imported commodities from historically important source regions. Instead, these dynamics reflect the incorporation of new regions into the pool of potential alien species, likely as a consequence of expanding trade networks and environmental change. This process compensates for the depletion of the historically important source species pool through successive invasions. We estimate that 1-16% of all species on Earth, depending on the taxonomic group, qualify as potential alien species. These results suggest that there remains a high proportion of emerging alien species we have yet to encounter, with future impacts that are difficult to predict.


Asunto(s)
Especies Introducidas/estadística & datos numéricos , Animales , Biodiversidad , Ecosistema , Historia del Siglo XVI , Historia del Siglo XVII , Historia del Siglo XVIII , Historia del Siglo XIX , Historia del Siglo XX , Historia del Siglo XXI , Especies Introducidas/historia , Modelos Biológicos , Dinámica Poblacional/historia
5.
Sci Data ; 4: 170041, 2017 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-28350387

RESUMEN

The introduction of species to locations where they do not naturally occur (termed aliens) can have far-reaching and unpredictable environmental and economic consequences. Therefore there is a strong incentive to stem the tide of alien species introduction and spread. In order to identify broad patterns and processes of alien invasions, a spatially referenced, global dataset on the historical introductions and alien distributions of a complete taxonomic group is required. Here we present the Global Avian Invasions Atlas (GAVIA)-a new spatial and temporal dataset comprising 27,723 distribution records for 971 alien bird species introduced to 230 countries and administrative areas spanning the period 6000BCE-AD2014. GAVIA was initiated to provide a unified database of records on alien bird introductions, incorporating records from all stages of invasion, including introductions that have failed as well as those that have succeeded. GAVIA represents the most comprehensive resource on the global distribution of alien species in any major taxon, allowing the spatial and temporal dynamics of alien bird distributions to be examined.


Asunto(s)
Aves , Animales , Conservación de los Recursos Naturales , Especies Introducidas
6.
Nat Commun ; 8: 14435, 2017 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-28198420

RESUMEN

Although research on human-mediated exchanges of species has substantially intensified during the last centuries, we know surprisingly little about temporal dynamics of alien species accumulations across regions and taxa. Using a novel database of 45,813 first records of 16,926 established alien species, we show that the annual rate of first records worldwide has increased during the last 200 years, with 37% of all first records reported most recently (1970-2014). Inter-continental and inter-taxonomic variation can be largely attributed to the diaspora of European settlers in the nineteenth century and to the acceleration in trade in the twentieth century. For all taxonomic groups, the increase in numbers of alien species does not show any sign of saturation and most taxa even show increases in the rate of first records over time. This highlights that past efforts to mitigate invasions have not been effective enough to keep up with increasing globalization.


Asunto(s)
Especies Introducidas , Simulación por Computador , Geografía , Internacionalidad , Islas , Especificidad de la Especie , Factores de Tiempo
7.
PLoS Biol ; 15(1): e2000942, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-28081142

RESUMEN

Alien species are a major component of human-induced environmental change. Variation in the numbers of alien species found in different areas is likely to depend on a combination of anthropogenic and environmental factors, with anthropogenic factors affecting the number of species introduced to new locations, and when, and environmental factors influencing how many species are able to persist there. However, global spatial and temporal variation in the drivers of alien introduction and species richness remain poorly understood. Here, we analyse an extensive new database of alien birds to explore what determines the global distribution of alien species richness for an entire taxonomic class. We demonstrate that the locations of origin and introduction of alien birds, and their identities, were initially driven largely by European (mainly British) colonialism. However, recent introductions are a wider phenomenon, involving more species and countries, and driven in part by increasing economic activity. We find that, globally, alien bird species richness is currently highest at midlatitudes and is strongly determined by anthropogenic effects, most notably the number of species introduced (i.e., "colonisation pressure"). Nevertheless, environmental drivers are also important, with native and alien species richness being strongly and consistently positively associated. Our results demonstrate that colonisation pressure is key to understanding alien species richness, show that areas of high native species richness are not resistant to colonisation by alien species at the global scale, and emphasise the likely ongoing threats to global environments from introductions of species.


Asunto(s)
Biodiversidad , Aves/fisiología , Internacionalidad , Especies Introducidas , Animales , Producto Interno Bruto , Especificidad de la Especie , Factores de Tiempo
8.
Glob Ecol Biogeogr ; 23(1): 40-51, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26430385

RESUMEN

AIM: Global-scale studies are required to identify broad-scale patterns in the distributions of species, to evaluate the processes that determine diversity and to determine how similar or different these patterns and processes are among different groups of freshwater species. Broad-scale patterns of spatial variation in species distribution are central to many fundamental questions in macroecology and conservation biology. We aimed to evaluate how congruent three commonly used metrics of diversity were among taxa for six groups of freshwater species. LOCATION: Global. METHODS: We compiled geographical range data on 7083 freshwater species of mammals, amphibians, reptiles, fishes, crabs and crayfish to evaluate how species richness, richness of threatened species and endemism are distributed across freshwater ecosystems. We evaluated how congruent these measures of diversity were among taxa at a global level for a grid cell size of just under 1°. RESULTS: We showed that although the risk of extinction faced by freshwater decapods is quite similar to that of freshwater vertebrates, there is a distinct lack of spatial congruence in geographical range between different taxonomic groups at this spatial scale, and a lack of congruence among three commonly used metrics of biodiversity. The risk of extinction for freshwater species was consistently higher than for their terrestrial counterparts. MAIN CONCLUSIONS: We demonstrate that broad-scale patterns of species richness, threatened-species richness and endemism lack congruence among the six freshwater taxonomic groups examined. Invertebrate species are seldom taken into account in conservation planning. Our study suggests that both the metric of biodiversity and the identity of the taxa on which conservation decisions are based require careful consideration. As geographical range information becomes available for further sets of species, further testing will be warranted into the extent to which geographical variation in the richness of these six freshwater groups reflects broader patterns of biodiversity in fresh water.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA