Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Base de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Manage ; 73(1): 130-143, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37891388

RESUMEN

How people value rivers, wetlands and floodplains influences their attitudes, beliefs and behaviours towards these ecosystems, and can shape policy and management interventions. Better understanding why people value rivers, wetlands and floodplains and their key ecosystem components, such as vegetation, helps to determine what factors underpin the social legitimacy required for effective management of these systems. This study sought to ascertain perspectives on the value of non-woody vegetation in river-floodplain systems via an online survey. The survey found that participants valued non-woody vegetation for their provision of a range of ecosystem functions and services, with strong emphasis on ecological aspects such as regulation functions, habitat provision and biodiversity. However, the inclusion of a question framed to focus on stories or narratives resulted in a different emphasis. Responses indicated that non-woody vegetation, and rivers, wetlands and floodplains were valued for the way they made people feel through lived experiences such as recreational activities, personal interactions with nature, educational and research experiences. This highlights the important role of storytelling in navigating complex natural resource management challenges and ascertaining a deeper understanding of values that moves beyond provision of function to feeling. Improved understanding of the diverse ways people value and interact with river-floodplain systems will help develop narratives and forms of engagement that foster shared understanding, empathy and collaboration. Appreciation of plural values such as the provision of functions and services along with the role of emotional connections and lived experience will likely increase lasting engagement of the general public with management to protect and restore river-floodplain systems.


Asunto(s)
Ecosistema , Humedales , Humanos , Ríos , Biodiversidad , Conservación de los Recursos Naturales/métodos
2.
J Environ Manage ; 348: 119499, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37924694

RESUMEN

Practitioners of environmental water management (EWM) operate within complex social-ecological systems. We sought to better understand this complexity by investigating the management of environmental water for vegetation outcomes. We conducted an online survey to determine practitioners' perspectives on EWM for non-woody vegetation (NWV) in the Murray-Darling Basin, Australia with regards to: i) desirable outcomes and benefits; ii) influencing factors and risks; iii) challenges of monitoring and evaluation, and iv) improving outcomes. Survey participants indicated that EWM aims to achieve outcomes by improving or maintaining vegetation attributes and the functions and values these provide. Our study reveals that EWM practitioners perceive NWV management in a holistic and highly interconnected way. Numerous influencing factors as well as risks and challenges to achieving outcomes were identified by participants, including many unrelated to water. Survey responses highlighted six areas to improve EWM for NWV outcomes: (1) flow regimes, (2) vegetation attributes, (3) non-flow drivers, (4) management-governance considerations, (5) functions and values, and (6) monitoring, evaluation and research. These suggest a need for more than 'just water' when it comes to the restoration and management of NWV. Our findings indicate more integrated land-water governance and management is urgently required to address the impacts of non-flow drivers such as pest species, land-use change and climate change. The results also indicate that inherent complexity in EWM for ecological outcomes has been poorly addressed, with a need to tackle social-ecological constraints to improve EWM outcomes.


Asunto(s)
Conservación de los Recursos Naturales , Agua , Humanos , Conservación de los Recursos Naturales/métodos , Australia , Abastecimiento de Agua , Ecosistema , Ríos
3.
Water Environ Res ; 95(8): e10909, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37429828

RESUMEN

High concentrations of the most consumed pharmaceuticals, caffeine and paracetamol, have been observed globally in wastewater treatment plant discharge. Here, we assess the potential for photodegradation of caffeine and paracetamol residues at concentrations like those observed in treated wastewater discharges to the environment. Laboratory assays were used to measure rates of photodegradation of these two compounds both in distilled water and in natural river water with leaf litter leachate. When exposed to artificial light simulating natural sunlight, the half-life values of caffeine and paracetamol were significantly shorter than in the dark. The presence of organic matter increased caffeine and paracetamol half-life by lessening the photolytic effect. These results suggest that photolysis is a substantial contributor to the degradation of caffeine and paracetamol. The findings contribute to our understanding of persistence of pharmaceuticals in treated wastewater discharge. PRACTITIONER POINTS: The photodegradation of caffeine and paracetamol residues in surface water was examined. With leaf litter leachate, caffeine and paracetamol were photodegraded in distilled and natural river water in laboratory. Caffeine's half-life ranged from 2.3 to 16.2 days under artificial sunlight andparacetamols from 4.3 to 12.2 days. When incubated in the dark, the half-life for both compounds exceeded 4 weeks. Organic matter decreased the photolytic action of caffeine and paracetamol.


Asunto(s)
Contaminantes Químicos del Agua , Agua , Aguas Residuales , Fotólisis , Cafeína , Acetaminofén , Luz Solar , Contaminantes Químicos del Agua/química , Preparaciones Farmacéuticas
4.
Water (Basel) ; 13(3): 371, 2021 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-33868721

RESUMEN

The biological assessment of rivers i.e., their assessment through use of aquatic assemblages, integrates the effects of multiple-stressors on these systems over time and is essential to evaluate ecosystem condition and establish recovery measures. It has been undertaken in many countries since the 1990s, but not globally. And where national or multi-national monitoring networks have gathered large amounts of data, the poor water body classifications have not necessarily resulted in the rehabilitation of rivers. Thus, here we aimed to identify major gaps in the biological assessment and rehabilitation of rivers worldwide by focusing on the best examples in Asia, Europe, Oceania, and North, Central, and South America. Our study showed that it is not possible so far to draw a world map of the ecological quality of rivers. Biological assessment of rivers and streams is only implemented officially nation-wide and regularly in the European Union, Japan, Republic of Korea, South Africa, and the USA. In Australia, Canada, China, New Zealand, and Singapore it has been implemented officially at the state/province level (in some cases using common protocols) or in major catchments or even only once at the national level to define reference conditions (Australia). In other cases, biological monitoring is driven by a specific problem, impact assessments, water licenses, or the need to rehabilitate a river or a river section (as in Brazil, South Korea, China, Canada, Japan, Australia). In some countries monitoring programs have only been explored by research teams mostly at the catchment or local level (e.g., Brazil, Mexico, Chile, China, India, Malaysia, Thailand, Vietnam) or implemented by citizen science groups (e.g., Southern Africa, Gambia, East Africa, Australia, Brazil, Canada). The existing large-extent assessments show a striking loss of biodiversity in the last 2-3 decades in Japanese and New Zealand rivers (e.g., 42% and 70% of fish species threatened or endangered, respectively). A poor condition (below Good condition) exists in 25% of South Korean rivers, half of the European water bodies, and 44% of USA rivers, while in Australia 30% of the reaches sampled were significantly impaired in 2006. Regarding river rehabilitation, the greatest implementation has occurred in North America, Australia, Northern Europe, Japan, Singapore, and the Republic of Korea. Most rehabilitation measures have been related to improving water quality and river connectivity for fish or the improvement of riparian vegetation. The limited extent of most rehabilitation measures (i.e., not considering the entire catchment) often constrains the improvement of biological condition. Yet, many rehabilitation projects also lack pre-and/or post-monitoring of ecological condition, which prevents assessing the success and shortcomings of the recovery measures. Economic constraints are the most cited limitation for implementing monitoring programs and rehabilitation actions, followed by technical limitations, limited knowledge of the fauna and flora and their life-history traits (especially in Africa, South America and Mexico), and poor awareness by decision-makers. On the other hand, citizen involvement is recognized as key to the success and sustainability of rehabilitation projects. Thus, establishing rehabilitation needs, defining clear goals, tracking progress towards achieving them, and involving local populations and stakeholders are key recommendations for rehabilitation projects (Table 1). Large-extent and long-term monitoring programs are also essential to provide a realistic overview of the condition of rivers worldwide. Soon, the use of DNA biological samples and eDNA to investigate aquatic diversity could contribute to reducing costs and thus increase monitoring efforts and a more complete assessment of biodiversity. Finally, we propose developing transcontinental teams to elaborate and improve technical guidelines for implementing biological monitoring programs and river rehabilitation and establishing common financial and technical frameworks for managing international catchments. We also recommend providing such expert teams through the United Nations Environment Program to aid the extension of biomonitoring, bioassessment, and river rehabilitation knowledge globally.

5.
PeerJ ; 4: e2593, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27812407

RESUMEN

Rates of hybridization and introgression are increasing dramatically worldwide because of translocations, restocking of organisms and habitat modifications; thus, determining whether hybridization is occuring after reintroducing extirpated congeneric species is commensurately important for conservation. Restocking programs are sometimes criticized because of the genetic consequences of hatchery-bred fish breeding with wild populations. These concerns are important to conservation restocking programs, including those from the Australian freshwater fish family, Percichthyidae. Two of the better known Australian Percichthyidae are the Murray Cod, Maccullochella peelii and Trout Cod, Maccullochella macquariensis which were formerly widespread over the Murray Darling Basin. In much of the Murrumbidgee River, Trout Cod and Murray Cod were sympatric until the late 1970s when Trout Cod were extirpated. Here we use genetic single nucleotide polymorphism (SNP) data together with mitochondrial sequences to examine hybridization and introgression between Murray Cod and Trout Cod in the upper Murrumbidgee River and consider implications for restocking programs. We have confirmed restocked riverine Trout Cod reproducing, but only as inter-specific matings, in the wild. We detected hybrid Trout Cod-Murray Cod in the Upper Murrumbidgee, recording the first hybrid larvae in the wild. Although hybrid larvae, juveniles and adults have been recorded in hatcheries and impoundments, and hybrid adults have been recorded in rivers previously, this is the first time fertile F1 have been recorded in a wild riverine population. The F1 backcrosses with Murray cod have also been found to be fertile. All backcrosses noted were with pure Murray Cod. Such introgression has not been recorded previously in these two species, and the imbalance in hybridization direction may have important implications for restocking programs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA