Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
AMB Express ; 14(1): 115, 2024 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-39400776

RESUMEN

Bariatric surgery is vital for sustainable weight loss and metabolic improvement in obese individuals, but its effects on gut microbiota and their role in these benefits require further investigation. Investigate the temporal changes in gut microbiota in obese patients undergoing bariatric surgery (gastric sleeve gastrectomy or Roux-en-Y Gastric Bypass (RYGB)) compared to healthy controls, aiming to understand their role in weight loss and metabolic health improvement. A case-control study included 30 obese patients aged 65-95 undergoing bariatric surgery, and 18 matched healthy controls. Selection criteria were based on age, race, BMI, history of antibiotics, probiotics, and prebiotics usage. Stool samples were collected at baseline, three months, and six months post-surgery for DNA extraction and quantitative real-time PCR analysis to assess gut microbiota changes. Physical activity and dietary intake were evaluated using standardized questionnaires. Statistical analyses were performed using R. Post-surgery, patients showed significant reductions in weight and BMI, with changes in dietary habits and physical activity. Quantitative real-time PCR analysis revealed substantial alterations in bacterial groups such as Bacteroides and Fusobacterium. However, some groups showed no significant changes, indicating a complex interaction between gut microbiota and bariatric surgery. Notable correlations were found between body weight, BMI, and specific bacterial groups like the C. cluster IV and Lactobacillus, particularly in RYGB patients. Bariatric surgery significantly alters gut microbiota, aiding weight loss and metabolic regulation in obese patients. Understanding these changes is crucial for developing effective obesity management strategies, requiring further research to optimize outcomes.

2.
Heliyon ; 10(17): e36859, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39281519

RESUMEN

Pseudomonas aeruginosa (P. aeruginosa) significantly contributes to nosocomial infections and necessitates research into novel treatment methods. For the first time, this research evaluated the immunoprotective potential of recombinant PAPI-1 encoded type IV pili targeting P. aeruginosa in BALB/C mice. The target sequence was identified, and a PilS2-encoding vector was constructed. The vector was then expressed and purified in E. coli BL21 (DE3). The PilS2 protein was inoculated into BALB/C mice in four groups, with or without alum, to measure total IgG, its subclasses, and cytokines. MTT and opsonophagocytosis tests were used to examine the immunological response. PilS2, especially when paired with alum, boosts the humoral immune response by enhancing IgG and IL-4 levels. However, PilS2 did not affect IL-17 or IFN-γ and only increased lymphocyte proliferation. Antibodies targeting PilS2 increased phagocytic cell death of P. aeruginosa by over 95 %, indicating possible therapies for P. aeruginosa infections. Our study on the immunopotentiation of P. aeruginosa PilS2 paves the way for pilin-based vaccines and immunotherapy targeting this pathogen.

3.
Int Immunopharmacol ; 125(Pt B): 111197, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37951200

RESUMEN

For protection against Pseudomonas aeruginosa strains, a number of vaccine candidates have been introduced thus far. However, despite significant attempts in recent years, there are currently no effective immunogenic Bacteria components against this pathogen on the market. P. aeruginosa encoding a number of different virulence characteristics, as well as the rapid growth in multiple drug-resistant forms, has raised numerous health issues throughout the world. This pathogen expresses three different subtypes of T4P, including IVa, IVb, and Tad which are involved in various cellular processes. Highly virulent strains of P. aeruginosa can encode well-conserved PAPI-1 associated PilS2 pilus. Designing an efficient pili-based immunotherapy approach targeting P. aeruginosa pilus has remained controversial due to the variability heterogeneousness and hidden well-preserved binding site of T4aP and no approved human study is commercially based on IVa pilin. In this investigation, for the first time, through analytical immunoinformatics, we designed an effective chimeric PilS2 immunogen against numerous clinically important P. aeruginosa strains. Through active immunization against the extremely conserved region of the chimeric PilS2 pilin, we showed that PilS2 chimeric pilin whether administered alone or formulated with alum as an adjuvant could substantially stimulate humoral immunological responses in BALB/c mice. Based on these findings, we conclude that PilS2 pilin is therapeutically effective against a variety of highly virulent strains of P. aeruginosa and can act as a new immunogen for more research towards the creation of efficient immunotherapy techniques against the P. aeruginosa as a dexterous pathogen.


Asunto(s)
Proteínas Fimbrias , Pseudomonas aeruginosa , Humanos , Animales , Ratones , Proteínas Fimbrias/genética , Vacunación , Inmunoterapia , Adyuvantes Inmunológicos , Ratones Endogámicos BALB C
4.
Front Med (Lausanne) ; 9: 985300, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36106322

RESUMEN

Background: Although the etiopathogenesis of inflammatory bowel disease (IBD) is still poorly understood, Escherichia coli has been described as a potential causative microorganism in IBD pathogenesis and also disease progression, offering a potential therapeutic target for disease management. Therefore, we conducted this study to investigate the pathotypes, phylogenetic groups, and antimicrobial resistance of E. coli isolates from patients with IBD in Iran. Methods: Fecal and biopsy colonic samples were collected from IBD patients experiencing flare-up episodes referred to Taleghani hospital in Tehran, Iran, between August 2020 and January 2021. Identification of E. coli strains was performed based on biochemical and molecular methods. Antibiotic susceptibility testing was performed as recommended by the Clinical and Laboratory Standards Institute. Phylogrouping and pathotyping of each isolate were carried out using polymerase chain reaction (PCR) and multilocus sequence typing (MLST) assays. Results: A total of 132 non-duplicate E. coli strains were isolated from 113 IBD patients, including 96 ulcerative colitis (UC), and 17 Crohn's disease (CD) patients. In our study, 55% of CD-related E. coli and 70.5% of UC-related isolates were non-susceptible to at least three or more unique antimicrobial classes, and were considered as multidrug-resistant (MDR) strains. E. coli strains exhibited a high level of resistance to cefazolin, ampicillin, tetracycline, ceftazidime, ciprofloxacin, and cefotaxime. Enterotoxigenic E. coli (ETEC) and diffusely adherent E. coli (DAEC) were the most prevalent pathotypes, and groups B2 and D were the predominant phylogroups. Conclusion: In the present study, we found that E. coli strains that colonize the gut of Iranian patients with IBD most frequently belonged to phylogenetic groups B2 and D. We also conclude that E. coli isolates from IBD patients have been revealed to be resistant to commonly used antibiotics, in which most of them harbored strains that would be categorized as MDR.

5.
FEMS Yeast Res ; 21(1)2021 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-33332529

RESUMEN

ß-Carotene is a yellow-orange-red pigment used in food, cosmetics and pharmacy. There is no commercial yeast-based process for ß-carotene manufacturing. In this work, we engineered the baker's yeast Saccharomyces cerevisiae by expression of lipases and carotenogenic genes to enable the production of ß-carotene on hydrophobic substrates. First, the extracellular lipase (LIP2) and two cell-bound lipases (LIP7 and LIP8) from oleaginous yeast Yarrowia lipolytica were expressed either individually or in combination in S. cerevisiae. The engineered strains could grow on olive oil and triolein as the sole carbon source. The strain expressing all three lipases had ∼40% lipid content per dry weight. Next, we integrated the genes encoding ß-carotene biosynthetic pathway, crtI, crtYB and crtE from Xanthophyllomyces dendrorhous. The resulting engineered strain bearing the lipases and carotenogenic genes reached a titer of 477.9 mg/L ß-carotene in yeast peptone dextrose (YPD) medium supplemented with 1% (v/v) olive oil, which was 12-fold higher than an analogous strain without lipases. The highest ß-carotene content of 46.5 mg/g DCW was obtained in yeast nitrogen base (YNB) medium supplemented with 1% (v/v) olive oil. The study demonstrates the potential of applying lipases and hydrophobic substrate supplementation for the production of carotenoids in S. cerevisiae.


Asunto(s)
Vías Biosintéticas/genética , Ingeniería Metabólica/métodos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , beta Caroteno/biosíntesis , beta Caroteno/genética , Vías Biosintéticas/fisiología , Medios de Cultivo , Interacciones Hidrofóbicas e Hidrofílicas , Lipasa/genética , Yarrowia/genética , beta Caroteno/metabolismo
6.
AMB Express ; 10(1): 176, 2020 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-33006684

RESUMEN

Biogenic amines (BAs) are low molecular weight organic bases formed by natural amino acids decarboxylation and trigger an array of toxicological effects in humans and animals. Bacterial amine oxidases enzymes are determined as practical tools to implement the rapid quantification of BAs in foods. Our study set out to obtain a new efficient, amine oxidase enzyme for developing new enzyme-based quantification of histamine. The soils from different sources were screened using histamine as sole carbon and nitrogen sources, and histamine oxidase producing bacteria were selected and identified using specific primers for histamine oxidase (HOD) gene. The HOD gene of six strains, out of 26 isolated histamine-utilizing bacteria, were amplified using our designed primers. The HOD enzyme from Glutamicibacter sp. N1A3101, isolated from nettle soil, was found to be thermostable and showed the highest substrate specificity toward the histamine and with no detected activity in the presence of putrescine, cadaverine, spermine, and spermidine. Its oxidation activity toward tyramine was lower than other HOD reported so far. The isolated enzyme was stable at 60 °C for 30 min and showed pH stability ranging from 6 to 9. Furthermore, we indicated the induction of identified HOD activity in the presence of betahistine as well, with nearly equal efficiency and without the consumption of the substrate.

7.
Carbohydr Polym ; 232: 115813, 2020 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-31952611

RESUMEN

Shigella flexneri is a gram-negative pathogen that causes shigellosis in humans and primates. MxiH antigen is known as one of the invasive factors in most Gram-negative bacteria consisting of a needle-like structure in the main backbone of the type 3 secretory system. Recombinant MxiH antigen was produced by E. coli BL21 and purified antigen was loaded into chitosan nanoparticles (CS-MxiH). After 20thand 55th of intranasal vaccinations, the titers of IgG, IgA, IL-4, and IFN-γ were evaluated. The results indicated the successful synthesis of CS nanoparticles followed by the effective loading of MxiH antigen. The results of animal experiments showed that the intranasal administration of CS-MxiH increased IgG and IgA compared to control groups. Increased levels of IL-4 and IFN-γ in groups immunized with CS-MxiH are probably due to the activation of plasmacytoid and myeloid cells presenting antigen in nasal epithelial mucosa and stimulating B cells.


Asunto(s)
Antígenos Bacterianos/química , Quitosano/química , Nanopartículas/química , Shigella flexneri/química , Vacunas/química , Antígenos Bacterianos/inmunología , Antígenos Bacterianos/aislamiento & purificación , Proteínas Recombinantes/química , Proteínas Recombinantes/inmunología , Proteínas Recombinantes/aislamiento & purificación , Vacunas/inmunología
8.
Iran J Public Health ; 47(8): 1151-1159, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30186787

RESUMEN

BACKGROUND: Due to the amphipathic properties of biosurfactants which act on surfaces and interfaces interest by a variety of industries such as cosmetic, pharmaceutical, bioremediation and petroleum-related industries has recently increased. METHODS: Detection of a high-efficiency biosurfactant producer using preliminary screening methods from soil contaminated with crude oil was carried at the Microbiology Laboratory at Shahid Beheshti University, Tehran, Iran in 2013. Then after characterization of some physico-chemical properties of produced biosurfactant and production optimization conditions, processes of purification and complete identification were done. RESULTS: Pseudomonas aeruginosa sp. ZN was selected as high-efficiency biosurfactant producing strain from soil contaminated with oil from Ahvaz City, Khuzestan Province, southern Iran. The biosurfactant production in modified BH2 culture medium supplemented with 1% n-hexadecane occurred during exponential phase resulting in a reduction surface tension from 70 to 29 mN/m. Strain ZN produced biosurfactant with different properties to other Pseudomonas reported. These characterizations included continued production at C/N ratio range of 10-40; the produced biosurfactant could not separate stable emulsion of span-80-kerosene: Tween-80-distilled water (30:70) within 24 h. The produced biosurfactants were able to increase hydrophobicity of bacterial cell to 55%. Recovery of biosurfactants from cell-free supernatant was performed with acid precipitation and ammonium sulfate precipitation. Chemical analysis such as spraying techniques on developed TLC plate and staining methods of supernatant indicated that produced biosurfactants were glycolipids, characterized by ESI-MS analysis of extracted product as di-rhamnolipids. CONCLUSION: Ability of this strain to produce biosurfactant in the presence of cooked oil and n-hexadecane make it an optimistic candidate for biodegradation of some derivatives of crude oil and food industry.

9.
Biotechnol Appl Biochem ; 65(4): 523-532, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29297935

RESUMEN

Since 60-80% of total costs of production are usually associated with downstream collection, separation, and purification processes, it has become advantageous to investigate how to replace traditional methods with efficient and cost-effective alternative techniques for recovery and purification of biosurfactants. In the traditional techniques, large volumes of organic solvents are usually used for increasing production cost and the overall environmental burden. In addition, traditional production and separation methods typically carried out in batch cultures reduce biosurfactant yields due to product inhibition and lower biosurfactants activity as a result of interaction with the organic solvents used. However, some in situ recovery methods that allow continuous separation of bioproducts from culture broth leading to an improvement in yield production and fermentation efficiency. For biosurfactants commercialization, enhancement of product capacity of the separation methods and the rate of product removal is critical. Recently, interest in the integration of separation methods with a production step as rapid and efficient techniques has been increasing. This review focuses on the technology gains and potentials for the most common methods used in in situ product removal: foam fractionation and ultrafiltration, especially used to recover and purify two well-known biosurfactants: glycolipids (rhamnolipids) and lipopeptides (surfactins).


Asunto(s)
Glucolípidos/economía , Lipopéptidos/economía , Tensoactivos/economía , Glucolípidos/aislamiento & purificación , Glucolípidos/metabolismo , Lipopéptidos/aislamiento & purificación , Lipopéptidos/metabolismo , Solventes/economía , Solventes/aislamiento & purificación , Solventes/metabolismo , Tensoactivos/aislamiento & purificación , Tensoactivos/metabolismo
10.
Molecules ; 22(9)2017 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-28891975

RESUMEN

The Plackett-Burman design and the Box-Behnken design, statistical methodologies, were employed for the optimization lipase and biosurfactant production by Ochrobactrum intermedium strain MZV101 in an identical broth medium for detergent applications. Environmental factor pH determined to be most mutual significant variables on production. A high concentration of molasses at high temperature and pH has a negative effect on lipase and biosurfactant production by O. intermedium strain MZV101. The chosen mathematical method of medium optimization was sufficient for improving the industrial production of lipase and biosurfactant by bacteria, which were respectively increased 3.46- and 1.89-fold. The duration of maximum production became 24 h shorter, so it was fast and cost-saving. In conclusion, lipase and biosurfactant production by O. intermedium strain MZV101 in an identical culture medium at pH 10.5-11 and 50-60 °C, with 1 g/L of molasses, seemed to be economical, fast, and effective for the enhancement of yield percentage for use in detergent applications.


Asunto(s)
Medios de Cultivo/química , Lipasa/biosíntesis , Melaza/análisis , Ochrobactrum/metabolismo , Tensoactivos/metabolismo , Medios de Cultivo/farmacología , Análisis Factorial , Fermentación , Concentración de Iones de Hidrógeno , Microbiología Industrial , Temperatura
11.
Lipids Health Dis ; 16(1): 177, 2017 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-28923075

RESUMEN

BACKGROUND: Alkaline thermostable lipase and biosurfactant producing bacteria are very interested at detergent applications, not only because of their eco-friendly characterize, but alsoproduction lipase and biosurfactant by using cheap materials. Ochrobactrum intermedium strain MZV101 was isolated as washing powder resistant, alkaline thermostable lipase and biosurfactant producing bacterium in order to use at detergent applications. METHODS: O. intermedium strain MZV101 produces was lipase and biosurfactant in the same media with pH 10 and temperature of 60 °C. Washing test and some detergent compatibility character of lipase enzyme and biosurfactant were assayed. The antimicrobial activity evaluated against various bacteria and fungi. RESULTS: Lipase and biosurfactant produced by O. intermedium strain MZV101 exhibited high stability at pH 10-13 and temperature of 70-90 °C, biosurfactant exhibits good stability at pH 9-13 and thermostability in all range. Both lipase and biosurfactant were found to be stable in the presence of different metal ions, detergents and organic solvents. The lipase enzyme extracted using isopropanol with yield of 69.2% and biosurfactant with ethanol emulsification index value of 70.99% and yield of 9.32 (g/l). The single band protein after through from G-50 Sephadex column on SDS-PAGE was calculated to be 99.42 kDa. Biosurfactant O. intermedium strain MZV101 exhibited good antimicrobial activity against Gram-negative bacteria and against various bacterial pathogens. Based upon washing test biosurfactant and lipase O. intermedium strain MZV101considered being strong oil removal. CONCLUSION: The results of this study indicate that isolated lipase and biosurfactant with strong oil removal, antimicrobial activity and good stability could be useful for detergent applications.


Asunto(s)
Proteínas Bacterianas/metabolismo , Detergentes/química , Lipasa/metabolismo , Ochrobactrum/metabolismo , Tensoactivos/metabolismo , Antiinfecciosos/farmacología , Proteínas Bacterianas/aislamiento & purificación , Concentración de Iones de Hidrógeno , Lipasa/aislamiento & purificación , Ochrobactrum/enzimología , Ochrobactrum/genética , Ochrobactrum/aislamiento & purificación , Reacción en Cadena de la Polimerasa , Solventes/química , Tensoactivos/farmacología , Temperatura
12.
Molecules ; 21(10)2016 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-27669197

RESUMEN

An antimicrobial glycolipid biosurfactant (GBS), extracted and identified from a marine bacterium, was studied to inhibit pathogenic microorganisms. Production of the GBS was optimized using a statistical method, a response surface method (RSM) with a central composite design (CCD) for obtaining maximum yields on a cost-effective substrate, molasses. The GBS-producing bacterium was identified as Buttiauxella Species in terms of biochemical and molecular characteristics. This compound showed a desirable antimicrobial activity against some pathogens such as E. coli, Bacillus subtilis, Bacillus cereus, Candida albicans, Aspergilus niger, Salmonella enterica. The rheological studies described the stability of the GBS at high values in a range of pH (7-8), temperature (20-60) and salinity (0%-3%). The statistical optimization of GBS fermentation was found to be pH 7, temperature 33 °C, Peptone 1%, NaCl 1% and molasses 1%. The potency of the GBS as an effective antimicrobial agent provides evidence for its use against food and human pathogens. Moreover, favorable production of the GBS in the presence of molasses as a cheap substrate and the feasibility of pilot scale fermentation using an RSM method could expand its uses in food, pharmaceutical products and oil industries.


Asunto(s)
Enterobacteriaceae/metabolismo , Fermentación , Glucolípidos/biosíntesis , Glucolípidos/farmacología , Antiinfecciosos/química , Antiinfecciosos/metabolismo , Antiinfecciosos/farmacología , Antibiosis , Cromatografía de Gases y Espectrometría de Masas , Glucolípidos/química , Concentración de Iones de Hidrógeno , Espectroscopía de Resonancia Magnética , Salinidad , Espectroscopía Infrarroja por Transformada de Fourier , Tensoactivos/química , Tensoactivos/metabolismo , Tensoactivos/farmacología , Temperatura
13.
Iran J Public Health ; 45(5): 670-9, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-27398340

RESUMEN

BACKGROUND: Much of the environment is affected by petroleum contamination. It imposes serious health problems for humans as well as serious environmental impact. Bioremediation is an important consideration for removing environmental pollutants because, compared with other technologies, it incurrs lower costs and is environmentally compatible. METHODS: Crude oil degrading bacteria were isolated using serial dilutions of a bacterial consortium. The Taguchi experimental design L16 (4(5)) was used to optimize the biodegradation process of crude oil by the isolated strain. This investigation applied the parameters of temperature, salinity, pH, NH4Cl and FeSO4.7H2O. Modeling the kinetics of crude oil biodegradation included five batch cultivation experiments (2.5 ml/L to 40 ml/L) using crude oil as a single limiting substrate. RESULTS: Halomonas sp. MS1 was identified using identification tests. Maximum biodegradation efficiency was predicted to occur at pH=9, temperature=30 °C, salinity=2%, NH4Cl concentration=0.4 g/L and FeSO4.7H2O=0.04 g/L. After optimization, biodagradation was significantly (P<0.05) higher (i.e. 90.65%) than it results under the original conditions. Furthermore, growth kinetics modelling of bacteria in various concentrations of crude oil showed a positive correlation between increased concentration, up to 10 ml/L and bacterial growth, but this was not evident at higher concentrations (20-40 mL/L). CONCLUSION: Overall, bacteria in surface sediment samples from Kish Island have been determined as having good potential for application in oil biodegradation. Optimum amounts of the studied factors were determined successfully by applying the Taguchi experimental design and the models of Teissier and Haldane are suggested as kinetic models to describe the batch crude oil degradation behavior of MS1.

14.
J Basic Microbiol ; 56(5): 566-75, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26615815

RESUMEN

The aim of this study was isolation and characterization of a crude oil degrader and biosurfactant-producing bacterium, along with optimization of conditions for crude oil degradation. Among 11 isolates, 5 were able to emulsify crude oil in Minimal Salt Medium (MSM) among which one isolate, named KA1, showed the highest potency for growth rate and biodegradation. The isolate was identified as Dietzia cinnamea KA1 using morphological and biochemical characteristics and 16S rRNA gene sequencing. The optimal conditions were 510 mM NaCl, pH 9.0, 35 °C, and minimal requirement of 46.5 mM NH4 Cl and 2.10 mM NaH2 PO4 . Gravimetric test and Gas chromatography-Mass spectroscopy technique (GC-MS) showed that Dietzia cinnamea KA1 was able to utilize and degrade 95.7% of the crude oil after 5 days, under the optimal conditions. The isolate was able to grow and produce biosurfactant when cultured in MSM supplemented with crude oil, glycerol or whey as the sole carbon sources, but bacterial growth was occurred using molasses with no biosurfactant production. This is the first report of biosurfactant production by D. cinnamea using crude oil, glycerol and whey and the first study to report a species of Dietzia degrading a wide range of hydrocarbons in a short time.


Asunto(s)
Actinomycetales/metabolismo , Biodegradación Ambiental , Petróleo/metabolismo , Tensoactivos/metabolismo , Actinomycetales/aislamiento & purificación , ADN Bacteriano/genética , Glicerol/metabolismo , Hidrocarburos/metabolismo , ARN Ribosómico 16S/genética , Suero Lácteo/metabolismo
15.
J Environ Health Sci Eng ; 12(1): 114, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25436114

RESUMEN

Polycyclic aromatic hydrocarbons (PAHs) biodegradation in contaminated sediment is an attractive remediation technique and its success depends on the optimal condition for the PAH-degrading isolates. The aims of the current study was to isolate and identify PAHs-degrading bacteria from surface sediments of Nayband Bay and to evaluate the efficiency of statistically based experimental design for the optimization of phenanthrene (Phe) and Fluorene (Flu) biodegradation performed by enriched consortium. PAHs degrading bacteria were isolated from surface sediments. Purified strains were then identified by 16S rDNA gene sequence analysis. Taguchi L16 (4(5)) was employed to evaluate the optimum biodegradation of Phe and Flu by the enriched consortium. Total of six gram-negative bacterial strains including Marinobacter hydrocarbonoclasticus, Roseovarius pacificus, Pseudidiomarina sediminum and 3 unidentified strains were isolated from enrichment consortium, using Fluorene (Flu) and phenanthrene (Phe) as the sole carbon and energy source. The enriched consortium showed highest degradation abilities (64.0% Flu and 58.4% Phe degraded in 7 days) in comparison to a single strain cultures or mixtures. Maximum biodegradation efficiency was occur at temperature = 35°C; pH = 8; inoculum size = 0. 4 OD600nm; salinity = 40 ppt; C/N ratio = 100:10. In conclusion our results showed that, indigenous bacteria from mangrove surface sediments of Nayband Bay have high potential to degrade Flu and Phe with the best results achieved when enriched consortium was used.

16.
World J Microbiol Biotechnol ; 26(7): 1195-200, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24026923

RESUMEN

Oil-polluted soils were sampled from National Iranian South Oil Company (NISOC) for isolation and screening of C-S and not C-C targeted Dibenzothiophene (DBT) degrading microorganisms. Microbacterium sp. NISOC-06, a C-S targeted DBT degrading bacterium, was selected and its desulfurization ability was studied in aqueous phase and water-gasoline biphasic systems. The 16srRNA gene was amplified using universal eubacteria-specific primers, PCR product was sequenced and the sequence of nearly 1,500 bp 16srDNA was studied. Based on Gas Chromatography results Microbacterium sp. NISOC-06 utilized 94.8% of 1 mM DBT during the 2 weeks of incubation. UV Spectrophotometry and biomass production measurements showed that the Microbacterium sp. NISOC-06 was not able to utilize DBT as a carbon source. There was no accumulation of phenolic compounds as Gibb's assay showed. Biomass production in a biphasic system for which DBT-enriched gasoline was used as the sulfur source indicated the capability of Microbacterium sp. NISOC-06 to desulfurize gasoline.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA