Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
1.
Nat Commun ; 15(1): 5601, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38961099

RESUMEN

Capturing a shear band in a metallic glass during its propagation experimentally is very challenging. Shear bands are very narrow but extend rapidly over macroscopic distances, therefore, characterization of large areas at high magnification and high speed is required. Here we show how to control the shear bands in a pre-structured thin film metallic glass in order to directly measure local strains during initiation, propagation, or arrest events. Based on the experimental observations, a model describing the shear banding phenomenon purely within the frameworks of continuum mechanics is formulated. We claim that metallic glasses exhibit an elastic limit of about 5% which must be exceeded locally either at a stress concentrator to initiate a shear banding event, or at the tip of a shear band during its propagation. The model can successfully connect micro- and macroscopic plasticity of metallic glasses and suggests an alternative interpretation of controversial experimental observations.

2.
J Phys Chem Lett ; 15(24): 6286-6291, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38848352

RESUMEN

In this study, we combine in situ fast differential scanning calorimetry (FDSC) with synchrotron X-ray measurements to study simultaneously the structure and thermophysical properties of materials. Using the example of the organic compound BCH-52, we show that the X-ray beam can heat the sample and induce a shift of the heat-flow signal. The aim of this paper is to investigate the influence of radiation on sample behavior. The calorimetric data is used to quantify the absorbed beam energy and, together with the diffraction data, reveal an irreversible damage of the sample. The results are especially important for materials with high absorption coefficients and for high-energy X-ray and electron beams. Our findings illustrate that FDSC combined with X-ray diffraction is a suitable characterization method when beam damage must be minimized.

3.
3D Print Addit Manuf ; 11(2): e731-e742, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38689899

RESUMEN

Laser powder bed fusion (LPBF) of Al-Cu alloys shows high susceptibility to cracking due to a wide solidification temperature range. In this work, 2024 alloys were manufactured by LPBF at different laser processing parameters. The effect of processing parameters on the densification behavior and mechanical properties of the LPBF-processed 2024 alloys was investigated. The results show that the porosity increases significantly with increasing laser power, while the number of cracks and lack-of-fusion defects increase distinctly with increasing scan speed. The solidification cracking susceptibility of the LPBF-processed 2024 alloys prepared at different processing parameters was analyzed based on a finite element model, which was accurately predicted by theoretical calculations. Dense and crack-free 2024 samples with a high densification of over 98.1% were manufactured at a low laser power of 200 W combined with a low laser scan speed of 100 mm/s. The LPBF-processed 2024 alloys show a high hardness of 110 ± 4 HV0.2, an ultimate tensile strength of 300 ± 15 MPa, and an elongation of ∼3%. This work can serve as reference for obtaining crack-free and high-performance Al-Cu alloys by LPBF.

4.
Nature ; 626(8001): 999-1004, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38418915

RESUMEN

The advantage of 3D printing-that is, additive manufacturing (AM) of structural materials-has been severely compromised by their disappointing fatigue properties1,2. Commonly, poor fatigue properties appear to result from the presence of microvoids induced by current printing process procedures3,4. Accordingly, the question that we pose is whether the elimination of such microvoids can provide a feasible solution for marked enhancement of the fatigue resistance of void-free AM (Net-AM) alloys. Here we successfully rebuild an approximate void-free AM microstructure in Ti-6Al-4V titanium alloy by development of a Net-AM processing technique through an understanding of the asynchronism of phase transformation and grain growth. We identify the fatigue resistance of such AM microstructures and show that they lead to a high fatigue limit of around 1 GPa, exceeding the fatigue resistance of all AM and forged titanium alloys as well as that of other metallic materials. We confirm the high fatigue resistance of Net-AM microstructures and the potential advantages of AM processing in the production of structural components with maximum fatigue strength, which is beneficial for further application of AM technologies in engineering fields.

5.
ACS Appl Bio Mater ; 7(2): 936-949, 2024 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-38299869

RESUMEN

In this study, a recently reported Ti-based metallic glass (MG), without any toxic element, but with a significant amount of metalloid (Si-Ge-B, 18 atom %) and minor soft element (Sn, 2 atom %), was produced in ribbon form using conventional single-roller melt-spinning. The produced Ti60Zr20Si8Ge7B3Sn2 ribbons were investigated by differential scanning calorimetry and X-ray diffraction to confirm their amorphous structure, and their corrosion properties were further investigated by open-circuit potential and cyclic polarization tests. The ribbon's surface was functionalized by tannic acid, a natural plant-based polyphenol, to enhance its performance in terms of corrosion prevention and antimicrobial efficacy. These properties can potentially be exploited in the premucosal parts of dental implants (abutments). The Folin and Ciocalteu test was used for the quantification of tannic acid (TA) grafted on the ribbon surface and of its redox activity. Fluorescent microscopy and ζ-potential measurements were used to confirm the presence of TA on the surfaces of the ribbons. The cytocompatibility evaluation (indirect and direct) of TA-functionalized Ti60Zr20Si8Ge7B3Sn2 MG ribbons toward primary human gingival fibroblast demonstrated that no significant differences in cell viability were detected between the functionalized and as-produced (control) MG ribbons. Finally, the antibacterial investigation of TA-functionalized samples against Staphylococcus aureus demonstrated the specimens' antimicrobial properties, shown by scanning electron microscopy images after 24 h, presenting a few single colonies remaining on their surfaces. The thickness of bacterial aggregations (biofilm-like) that were formed on the surface of the as-produced samples reduced from 3.5 to 1.5 µm.


Asunto(s)
Pilares Dentales , Polifenoles , Titanio , Humanos , Titanio/química , Vidrio/química , Antibacterianos/farmacología
6.
Small ; 20(22): e2310364, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38109153

RESUMEN

Ni-free Ti-based bulk metallic glasses (BMGs) are exciting materials for biomedical applications because of their outstanding biocompatibility and advantageous mechanical properties. The glassy nature of BMGs allows them to be shaped and patterned via thermoplastic forming (TPF). This work demonstrates the versatility of the TPF technique to create micro- and nano-patterns and hierarchical structures on Ti40Zr10Cu34Pd14Sn2 BMG. Particularly, a hierarchical structure fabricated by a two-step TPF process integrates 400 nm hexagonal close-packed protrusions on 2.5 µm square protuberances while preserving the advantageous mechanical properties from the as-cast material state. The correlations between thermal history, structure, and mechanical properties are explored. Regarding biocompatibility, Ti40Zr10Cu34Pd14Sn2 BMGs with four surface topographies (flat, micro-patterned, nano-patterned, and hierarchical-structured surfaces) are investigated using Saos-2 cell lines. Alamar Blue assay and live/dead analysis show that all tested surfaces have good cell proliferation and viability. Patterned surfaces are observed to promote the formation of longer filopodia on the edge of the cytoskeleton, leading to star-shaped and dendritic cell morphologies compared with the flat surface. In addition to potential implant applications, TPF-patterned Ti-BMGs enable a high level of order and design flexibility on the surface topography, expanding the available toolbox for studying cell behavior on rigid and ordered surfaces.

7.
Nanomaterials (Basel) ; 13(14)2023 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-37513096

RESUMEN

Highly effective yet affordable non-noble metal catalysts are a key component for advances in hydrogen generation via electrolysis. The synthesis of catalytic heterostructures containing established Ni in combination with surface NiO, Ni(OH)2, and NiOOH domains gives rise to a synergistic effect between the surface components and is highly beneficial for water splitting and the hydrogen evolution reaction (HER). Herein, the intrinsic catalytic activity of pure Ni and the effect of partial electrochemical oxidation of ultra-smooth magnetron sputter-deposited Ni surfaces are analyzed by combining electrochemical measurements with transmission electron microscopy, selected area electron diffraction, X-ray photoelectron spectroscopy, and atomic force microscopy. The experimental investigations are supplemented by Density Functional Theory and Kinetic Monte Carlo simulations. Kinetic parameters for the HER are evaluated while surface roughening is carefully monitored during different Ni film treatment and operation stages. Surface oxidation results in the dominant formation of Ni(OH)2, practically negligible surface roughening, and 3-5 times increased HER exchange current densities. Higher levels of surface roughening are observed during prolonged cycling to deep negative potentials, while surface oxidation slows down the HER activity losses compared to as-deposited films. Thus, surface oxidation increases the intrinsic HER activity of nickel and is also a viable strategy to improve catalyst durability.

8.
Nat Commun ; 14(1): 3670, 2023 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-37339962

RESUMEN

To alleviate the mechanical instability of major shear bands in metallic glasses at room temperature, topologically heterogeneous structures were introduced to encourage the multiplication of mild shear bands. Different from the former attention on topological structures, here we present a compositional design approach to build nanoscale chemical heterogeneity to enhance homogeneous plastic flow upon both compression and tension. The idea is realized in a Ti-Zr-Nb-Si-XX/Mg-Zn-Ca-YY hierarchically nanodomained amorphous alloy, where XX and YY denote other elements. The alloy shows ~2% elastic strain and undergoes highly homogeneous plastic flow of ~40% strain (with strain hardening) in compression, surpassing those of mono- and hetero-structured metallic glasses. Furthermore, dynamic atomic intermixing occurs between the nanodomains during plastic flow, preventing possible interface failure. Our design of chemically distinct nanodomains and the dynamic atomic intermixing at the interface opens up an avenue for the development of amorphous materials with ultrahigh strength and large plasticity.

9.
Materials (Basel) ; 16(3)2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36770265

RESUMEN

The effects of severe plastic deformation (SPD) by means of high-pressure torsion (HPT) on the structural properties of the two iron-based metallic glasses Fe73.9Cu1Nb3Si15.5B6.6 and Fe81.2Co4Si0.5B9.5P4Cu0.8 have been investigated and compared. While for Fe73.9Cu1Nb3Si15.5B6.6, HPT processing allows us to extend the known consolidation and deformation ranges, HPT processing of Fe81.2Co4Si0.5B9.5P4Cu0.8 for the first time ever achieves consolidation and deformation with a minimum number of cracks. Using numerous analyses such as X-ray diffraction, dynamic mechanical analyses, and differential scanning calorimetry, as well as optical and transmission electron microscopy, clearly reveals that Fe81.2Co4Si0.5B9.5P4Cu0.8 exhibits HPT-induced crystallization phenomena, while Fe73.9Cu1Nb3Si15.5B6.6 does not crystallize even at the highest HPT-deformation degrees applied. The reasons for these findings are discussed in terms of differences in the deformation energies expended, and the number and composition of the individual crystalline phases formed. The results appear promising for obtaining improved magnetic properties of glassy alloys without additional thermal treatment.

10.
Nanomaterials (Basel) ; 13(3)2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36770551

RESUMEN

Nanocomposites bear the potential to enable novel material properties that considerably exceed the capabilities of their individual constituent phases, thereby enabling the exploration of white areas on material property charts [...].

11.
Adv Sci (Weinh) ; : e2204315, 2022 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-36281692

RESUMEN

Currently, predominant high-performance permanent magnets contain rare-earth elements. In the search for rare-earth-free alternates, body-centered tetragonal Fe-Ni is notable. The ordering to form this phase from the usual cubic close-packed Fe-Ni is understood to be possible only below a critical temperature, commonly accepted to be 593 K. The ordering is first demonstrated by using neutron irradiation to accelerate atomic diffusion. The tetragonal phase, designated as the mineral tetrataenite, is found in Fe-based meteorites, its formation attributed to ultra-slow cooling. Despite many attempts with diverse approaches, bulk synthesis of tetrataenite has not been reported. Here it is shown that with appropriate alloy compositions, bulk synthesis of tetrataenite is possible, even in conventional casting at cooling rates 11-15 orders of magnitude higher than in meteorites. The barrier to obtaining tetrataenite (slow ordering from cubic close-packed to body-centered tetragonal) is circumvented, opening a processing window for potential rare-earth-free permanent magnets. The formation of tetrataenite on industrially practicable timescales also throws into question the interpretation of its formation in meteorites and their associated cooling rates.

12.
Mater Today Bio ; 16: 100378, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36039102

RESUMEN

This paper envisions Ti40Zr10Cu36Pd14 bulk metallic glass as an oral implant material and evaluates its antibacterial performance in the inhabitation of oral biofilm formation in comparison with the gold standard Ti-6Al-4V implant material. Metallic glasses are superior in terms of biocorrosion and have a reduced stress shielding effect compared with their crystalline counterparts. Dynamic mechanical and thermal expansion analyses on Ti40Zr10Cu36Pd14 show that these materials can be thermomechanically shaped into implants. Static water contact angle measurement on samples' surface shows an increased surface wettability on the Ti-6Al-4V surface after 48 â€‹h incubation in the water while the contact angle remains constant for Ti40Zr10Cu36Pd14. Further, high-resolution transmission and scanning transmission electron microscopy analysis have revealed that Ti40Zr10Cu36Pd14 interior is fully amorphous, while a 15 â€‹nm surface oxide is formed on its surface and assigned as copper oxide. Unlike titanium oxide formed on Ti-6Al-4V, copper oxide is hydrophobic, and its formation reduces surface wettability. Further surface analysis by X-ray photoelectron spectroscopy confirmed the presence of copper oxide on the surface. Metallic glasses cytocompatibility was first demonstrated towards human gingival fibroblasts, and then the antibacterial properties were verified towards the oral pathogen Aggregatibacter actinomycetemcomitans responsible for oral biofilm formation. After 24 â€‹h of direct infection, metallic glasses reported a >70% reduction of bacteria viability and the number of viable colonies was reduced by ∼8 times, as shown by the colony-forming unit count. Field emission scanning electron microscopy and fluorescent images confirmed the lower surface colonization of metallic glasses in comparison with controls. Finally, oral biofilm obtained from healthy volunteers was cultivated onto specimens' surface, and proteomics was applied to study the surface property impact on species composition within the oral plaque.

13.
Phys Rev Lett ; 128(24): 245501, 2022 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-35776470

RESUMEN

A deep understanding of the mechanisms controlling shear banding is of fundamental importance for improving the mechanical properties of metallic glasses. Atomistic simulations highlight the importance of nanoscale stresses and strains for shear banding, but corresponding experimental proofs are scarce due to limited characterization techniques. Here, by using precession nanodiffraction mapping in the transmission electron microscope, the atomic density and strain distribution of an individual shear band is quantitatively mapped at 2 nm resolution. We demonstrate that shear bands exhibit density alternation from the atomic scale to the submicron scale and complex strain fields exist, causing shear band segmentation and deflection. The atomic scale density alternation reveals the autocatalytic generation of shear transformation zones, while the density alternation at submicron scale results from the progressive propagation of shear band front and extends to the surrounding matrix, forming oval highly strained regions with density consistently higher (∼0.2%) than the encapsulated shear band segments. Through combination with molecular dynamic simulations, a complete picture for shear band formation and propagation is established.

14.
Sci Rep ; 12(1): 10784, 2022 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-35750707

RESUMEN

Metallic glasses (MG) have attracted much attention due to their superior hardness and good corrosion resistance. However, designing new MG compositions is still a big challenge, and their integration into different systems is limited when they are in the shape of bulk materials. Here, we present a new method for the fabrication of MG in the form of microfibers which could greatly help them to be integrated within different systems. The newly proposed technique has the ability to form MG structure from commercially available alloy compositions thanks to its significantly improved quenching rate(~ 108 K.s-1). In this technique, individual melt droplets are ejected on a rotating wheel forming a thin film which are ruptured upon solidification leading to the formation of MG microfibers. In this regard, we have fabricated microfibers from a commercial DIN 1.4401 stainless-steel which could form a completely amorphous structure confirmed by DSC, XRD, and HRTEM. The fabricated MG microfibers show an increased hardness for more than two-fold from 3.5 ± 0.17 GPa for the as-received stainless-steel to 7.77 ± 0.60 GPa for the amorphous microfibers. Subsequent heat-treatment of the microfibers resulted in a nanocrystalline structure with the presence of amorphous regions when the hardness increases even further to 13.5 ± 2.0 GPa. We propose that confinement of both shear transformation zones and dislocations in the heat-treated MG microfibers plays a major role in enhancing strength.

15.
Materials (Basel) ; 15(5)2022 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-35268944

RESUMEN

One way to rejuvenate metallic glasses is to increase their free volume. Here, by randomly removing atoms from the glass matrix, free volume is homogeneously generated in metallic glasses, and glassy states with different degrees of rejuvenation are designed and further mechanically tested. We find that the free volume in the rejuvenated glasses can be annihilated under tensile or compressive deformation that consequently leads to structural relaxation and strain-hardening. Additionally, the deformation mechanism of highly rejuvenated metallic glasses during the uniaxial loading-unloading tensile tests is investigated, in order to provide a systematic understanding of the relaxation and strain-hardening relationship. The observed strain-hardening in the highly rejuvenated metallic glasses corresponds to stress-driven structural and residual stress relaxation during cycling deformation. Nevertheless, the rejuvenated metallic glasses relax to a more stable state but could not recover their initial as-cast state.

16.
Nat Commun ; 13(1): 127, 2022 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-35013192

RESUMEN

The atomistic mechanisms occurring during the processes of aging and rejuvenation in glassy materials involve very small structural rearrangements that are extremely difficult to capture experimentally. Here we use in-situ X-ray diffraction to investigate the structural rearrangements during annealing from 77 K up to the crystallization temperature in Cu44Zr44Al8Hf2Co2 bulk metallic glass rejuvenated by high pressure torsion performed at cryogenic temperatures and at room temperature. Using a measure of the configurational entropy calculated from the X-ray pair correlation function, the structural footprint of the deformation-induced rejuvenation in bulk metallic glass is revealed. With synchrotron radiation, temperature and time resolutions comparable to calorimetric experiments are possible. This opens hitherto unavailable experimental possibilities allowing to unambiguously correlate changes in atomic configuration and structure to calorimetrically observed signals and can attribute those to changes of the dynamic and vibrational relaxations (α-, ß- and γ-transition) in glassy materials. The results suggest that the structural footprint of the ß-transition is related to entropic relaxation with characteristics of a first-order transition. Dynamic mechanical analysis data shows that in the range of the ß-transition, non-reversible structural rearrangements are preferentially activated. The low-temperature γ-transition is mostly triggering reversible deformations and shows a change of slope in the entropic footprint suggesting second-order characteristics.

17.
Materials (Basel) ; 14(22)2021 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-34832447

RESUMEN

In this study, the wear behavior of a heat-treatable Al-7Si-0.5Mg-0.5Cu alloy fabricated by selective laser melting was investigated systematically. Compared with the commercial homogenized AA2024 alloy, the fine secondary phase of the SLM Al-Cu-Mg-Si alloy leads to a low specific wear rate (1.8 ± 0.11 × 10-4 mm3(Nm)-1) and a low average coefficient of friction (0.40 ± 0.01). After the T6 heat treatment, the SLM Al-Cu-Mg-Si alloy exhibits a lower specific wear rate (1.48 ± 0.02 × 10-4 mm3(Nm)-1), but a similar average coefficient of friction (0.34 ± 0.01) as the heat-treated AA2024 alloy. Altogether, the SLM Al-3.5Cu-1.5Mg-1Si alloy is suitable for the achievement of not only superior mechanical performance, but also improved tribological properties.

18.
ACS Appl Mater Interfaces ; 13(36): 42613-42623, 2021 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-34491728

RESUMEN

Contrary to the electrochemical energy storage in Pd nanofilms challenged by diffusion limitations, extensive metal-hydrogen interactions in Pd-based metallic glasses result from their grain-free structure and presence of free volume. This contribution investigates the kinetics of hydrogen-metal interactions in gold-containing Pd-based metallic glass (MG) and crystalline Pd nanofilms for two different pore architectures and nonporous substrates. Fully amorphous MGs obtained by physical vapor deposition (PVD) co-sputtering are electrochemically hydrogenated by chronoamperometry. High-resolution (scanning) transmission electron microscopy and corresponding energy-dispersive X-ray analysis after hydrogenation corroborate the existence of several nanometer-sized crystals homogeneously dispersed throughout the matrix. These nanocrystals are induced by PdHx formation, which was confirmed by depth-resolved X-ray photoelectron spectroscopy, indicating an oxide-free inner layer of the nanofilm. With a larger pore diameter and spacing in the substrate (Pore40), the MG attains a frequency-independent impedance at low frequencies (∼500 Hz) with very high Bode magnitude stability accounting for enhanced ionic diffusion. On the contrary, on a substrate with a smaller pore diameter and spacing (Pore25), the MG shows a larger low-frequency (0.1 Hz) capacitance, linked to enhanced ionic transfer in the near-DC region. Hence, the nanoporosity of amorphous and crystalline metallic materials can be systematically adjusted depending on AC- and DC-type applications.

19.
Nanomaterials (Basel) ; 11(8)2021 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-34443805

RESUMEN

The current investigation presents a green mechanochemical procedure for the synthesis of a special kind of rubber-compatible organo-montmorillonite (OMMT) for use in the inner liner compound of tires. The compatibility character of the OMMT arises from the mechanochemical reaction of the raw bentonite mineral and gum rosin as some of the organic constituents of the inner liner composition. The monitoring of OMMT synthesis by various characterization techniques reveals that gum rosin gradually intercalates into the montmorillonite (MMT) galleries during milling and increases the interlayer spacing to 41.1 ± 0.5 Å. The findings confirm the simultaneous formation of single- or few-layered OMMT platelets with average sizes from the sub-micron range up to several micrometers during the milling process. The mechanical properties of the OMMT/rubber nanocomposite, such as tensile strength, tear resistance and elongation, present a good enhancement in comparison to the un-modified material. Moreover, the organo-modification of the inner liner composition also leads to a property improvement of about 50%.

20.
Materials (Basel) ; 14(11)2021 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-34071013

RESUMEN

Amorphous/crystalline nanolaminate composites have aroused extensive research interest because of their high strength and good plasticity. In this paper, the nanoindentation behavior of Cu64Zr36/Cu amorphous/crystalline nanolaminates (ACNLs) is investigated by molecular dynamics (MD) simulation while giving special attention to the plastic processes occurring at the interface. The load-displacement curves of ACNLs reveal small fluctuations associated with shear transformation zone (STZ) activation in the amorphous layer, whereas larger fluctuations associated with dislocations emission occur in the crystalline layer. During loading, local STZ activation occurs and the number of STZs increases as the indentation depth in the amorphous layer increases. These STZs are mostly located around the indenter, which correlates to the high stresses concentrated around the indenter. When the indenter penetrates the crystalline layer, dislocations emit from the interface of amorphous/crystalline, and their number increases with increasing indentation depth. During unloading, the overall number of STZs and dislocations decreases, while other new STZs and dislocations become activated. These results are discussed in terms of stress distribution, residual stresses, indentation rate and indenter radius.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA