Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Mol Ecol ; 31(2): 658-674, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34704311

RESUMEN

Coevolution is often considered a major driver of speciation, but evidence for this claim is not always found because diversity might be cryptic. When morphological divergence is low, molecular data are needed to uncover diversity. This is often the case in mites, which are known for their extensive and often cryptic diversity. We studied mites of the genus Poecilochirus that are phoretic on burying beetles (Silphidae: Nicrophorus). Poecilochirus taxonomy is poorly understood. Most studies on this genus focus on the evolutionary ecology of Poecilochirus carabi sensu lato, a complex of at least two biological species. Based on molecular data of 230 specimens from 43 locations worldwide, we identified 24 genetic clusters that may represent species. We estimate that these mites began to diversify during the Paleogene, when the clade containing P. subterraneus branched off and the remaining mites diverged into two further clades. One clade resembles P. monospinosus. The other clade contains 17 genetic clusters resembling P. carabi s.l.. Among these are P. carabi sensu stricto, P. necrophori, and potentially many additional cryptic species. Our analyses suggest that these clades were formed in the Miocene by large-scale geographic separation; co-speciation of mites with the host beetles can be largely ruled out. Diversification also seems to have happened on a smaller scale, potentially due to adaptation to specific hosts or local abiotic conditions, causing some clusters to specialize on certain beetle species. Our results suggest that biodiversity in this genus was generated by multiple interacting forces shaping the tangled webs of life.


Asunto(s)
Escarabajos , Ácaros , Animales , Evolución Biológica , Escarabajos/genética , Especificidad del Huésped , Ácaros/genética , Filogenia , Especificidad de la Especie
2.
Front Zool ; 15: 33, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30279721

RESUMEN

BACKGROUND: Immature stages of many animals can forage and feed on their own, whereas others depend on their parents' assistance to obtain or process food. But how does such dependency evolve, and which offspring and parental traits are involved? Burying beetles (Nicrophorus) provide extensive biparental care, including food provisioning to their offspring. Interestingly, there is substantial variation in the reliance of offspring on post-hatching care among species. Here, we examine the proximate mechanisms underlying offspring dependence, focusing on the larvae of N. orbicollis, which are not able to survive in the absence of parents. We specifically asked whether the high offspring dependence is caused by (1) a low starvation tolerance, (2) a low ability to self-feed or (3) the need to obtain parental oral fluids. Finally, we determined how much care (i.e. duration of care) they require to be able to survive. RESULTS: We demonstrate that N. orbicollis larvae are not characterized by a lower starvation tolerance than larvae of the more independent species. Hatchlings of N. orbicollis are generally able to self-feed, but the efficiency depends on the kind of food presented and differs from the more independent species. Further, we show that even when providing highly dependent N. orbicollis larvae with easy ingestible liquefied mice carrion, only few of them survived to pupation. However, adding parental oral fluids significantly increased their survival rate. Finally, we demonstrate that survival and growth of dependent N. orbicollis larvae is increased greatly by only a few hours of parental care. CONCLUSIONS: Considering the fact that larvae of other burying beetle species are able to survive in the absence of care, the high dependence of N. orbicollis larvae is puzzling. Even though they have not lost the ability to self-feed, an easily digestible, liquefied carrion meal is not sufficient to ensure their survival. However, our results indicate that the transfer of parental oral fluids is an essential component of care. In the majority of mammals, offspring rely on the exchange of fluids (i.e. milk) to survive, and our findings suggest that even in subsocial insects, such as burying beetles, parental fluids can significantly affect offspring survival.

3.
R Soc Open Sci ; 5(6): 180189, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30110489

RESUMEN

In animal families, parents are expected to adapt to their offspring's traits, and offspring, in turn, are expected to adapt to the environment circumscribed by their parents. However, whether such coevolutionary trajectories differ between closely related species is poorly understood. Here, we employ interspecific cross-fostering in three species of burying beetles, Nicrophorus orbicollis, Nicrophorus pustulatus and Nicrophorus vespilloides, to test for divergent co-adaptation among species with different degrees of offspring dependency on parental care, and to test whether they are able to discriminate against interspecific parasites. We found that offspring survival was always higher when offspring were reared by conspecific rather than heterospecific parents. In the case of N. orbicollis raising N. pustulatus, none of the larvae survived. Overall, these results indicate that parent and offspring traits have diverged between species, and that the differential survival of conspecific and heterospecific larvae is because of improper matching of co-adapted traits, or, in the case of N. orbicollis with larval N. pustulatus, because of selection on parents to recognize and destroy interspecific brood parasites. We suggest that burying beetles experiencing a high risk of brood parasitism have evolved direct recognition mechanisms that enable them to selectively kill larvae of potential brood parasites.

4.
J Chem Ecol ; 43(11-12): 1126-1127, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29177896

RESUMEN

The original version of this article unfortunately contained a mistake. The name of the main component released by Nicrophorus defodiens in Fig. 1a should read "Fuscumyl acetate", not "Fuscumol".

5.
J Chem Ecol ; 43(10): 971-977, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29032491

RESUMEN

In burying beetles, Nicrophorus spp. (Coleoptera: Silphidae: Nicrophorinae) mate finding is mediated by male produced volatile compounds. To date, pheromone components of only two species have been identified. In an attempt to better understand the evolution of male pheromone signaling in burying beetles, we investigated the male released volatiles of ten Nicrophorus species and one closely related nicrophorine species, Ptomascopus mori. Volatiles emitted by calling males were collected in the laboratory by means of solid phase micro extraction and analyzed using gas chromatography coupled with mass spectrometry. Identified volatiles included short chain esters of 4-methylcarboxylic acids, terpenoids, and some other aliphatic compounds. The long-range volatile signals of the burying beetle species included in this study are blends of two to seven components. We found that methyl or ethyl esters of 4-methylheptanoic acid and 4-methyloctanoic acid are produced by eight of the ten investigated Nicrophorus species. These esters may play a key role in chemical communication. Their widespread occurrence suggests that these compounds did not evolve recently, but appeared relatively early in the phylogeny of the genus. Although Ptomascopus is considered the sister genus of Nicrophorus, P. morio males do not produce any of the Nicrophorus compounds, but release 3-methylalkan-2-ones, which are absent in Nicrophorus. A better understanding of the evolution of burying beetle pheromones, however, will only be possible once more species have been studied.


Asunto(s)
Escarabajos/fisiología , Preferencia en el Apareamiento Animal , Feromonas/metabolismo , Compuestos Orgánicos Volátiles/metabolismo , Animales , Caprilatos/análisis , Caprilatos/metabolismo , Escarabajos/química , Esterificación , Femenino , Masculino , Feromonas/análisis , Terpenos/análisis , Terpenos/metabolismo , Vocalización Animal , Compuestos Orgánicos Volátiles/análisis
6.
Sci Rep ; 6: 29323, 2016 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-27378180

RESUMEN

Studies on the evolution of parental care have focused primarily on the costs and benefits of parental care and the life-history attributes that favour it. However, once care evolves, offspring in some taxa appear to become increasingly dependent on their parents. Although offspring dependency is a central theme in family life, the evolutionary dynamics leading to it are not fully understood. Beetles of the genus Nicrophorus are well known for their elaborate biparental care, including provisioning of their young. By manipulating the occurrence of pre- or post-hatching care, we show that the offspring of three burying beetle species, N. orbicollis, N. pustulatus, and N. vespilloides, show striking variation in their reliance on parental care. Our results demonstrate that this variation within one genus arises through a differential dependency of larvae on parental feeding, but not on pre-hatching care. In N. pustulatus, larvae appear to be nutritionally independent of their parents, but in N. orbicollis, larvae do not survive in the absence of parental feeding. We consider evolutionary scenarios by which nutritional dependency may have evolved, highlighting the role of brood size regulation via infanticide in this genus.


Asunto(s)
Escarabajos/fisiología , Conducta Alimentaria , Animales , Evolución Biológica , Variación Biológica Poblacional
7.
Proc Biol Sci ; 275(1650): 2521-8, 2008 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-18647719

RESUMEN

Proximate mechanisms underlying reproductive skew are obscure in many animals that breed communally. Here, we address causes of reproductive skew in brood-parasitic associations of burying beetles (Nicrophorus vespilloides). Male and female burying beetles feed and defend their larvae on buried carcasses. When several females locate the same small carcass, they engage in violent physical altercations. The subordinate then acts as an intraspecific brood parasite, laying eggs, but not providing care. The dominant female largely monopolizes access to the carcass; she alone provides parental care and her share of the brood is much larger than the subordinate's. On larger carcasses, subordinates have greater access to the carcass than on small ones, and reproductive skew is reduced. Differential fecundity, ovicide and larvicide have been suggested as causes of skew on small carcasses. Here, we report the results of the experiments pertaining to the first two of these potential mechanisms. Ovicide did not significantly contribute to reproductive skew on small carcasses, but differential fecundity did. Fecundity differences were due to dominance status, not body size per se. Fecundity differences disappeared when supplemental food was available, suggesting that reduced access to the carcass limits fecundity by causing nutritional deficiencies. Supplemental food prevented such nutritional deficiencies and allowed subordinates to produce as many eggs as dominants. Apparently, aggressive behaviour by dominants functions in the context of reproductive competition, limiting subordinate reproduction by preventing food intake on the carcass.


Asunto(s)
Fenómenos Fisiológicos Nutricionales de los Animales , Tamaño de la Nidada/fisiología , Escarabajos/fisiología , Jerarquia Social , Análisis de Varianza , Animales , Tamaño Corporal , Femenino , Fertilidad/fisiología , Alemania , Masculino , Reproducción/fisiología
8.
Proc Biol Sci ; 275(1645): 1831-8, 2008 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-18477544

RESUMEN

The ability to recognize individuals is an important aspect of social interactions, but it can also be useful to avoid repeated matings with the same individual. The Coolidge effect is the progressive decline in a male's propensity to mate with the same female combined with a heightened sexual interest in new females. Although males that recognize previous partners and show a preference for novel females should have a selective advantage as they can distribute sperm evenly among the females they encounter, there are few invertebrate examples of the Coolidge effect. Here we present evidence for this effect in the burying beetle Nicrophorus vespilloides and examine the mechanism underlying the discrimination between familiar and novel mates. Burying beetles feed and reproduce on vertebrate carcasses, where they regularly encounter conspecifics. Males showed greater sexual interest in novel females (virgin or mated) than in females they had inseminated before. The application of identical cuticular extracts allowed us to experimentally create females with similar odours, and male responses to such females demonstrated that they use female cuticular patterns for discrimination. The chemical analysis of the cuticular profile revealed greater inter-individual variation in female than in male cuticular patterns, which might be due to greater selection on females to signal their individual identity.


Asunto(s)
Escarabajos/metabolismo , Feromonas/metabolismo , Conducta Sexual Animal , Animales , Escarabajos/genética , Femenino , Endogamia , Masculino , Reconocimiento en Psicología , Selección Genética
9.
Zoology (Jena) ; 110(5): 360-8, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17702555

RESUMEN

In most animal species, brood size and body size exhibit some variation within and between populations. This is also true for burying beetles (genus Nicrophorus), a group in which the body size of offspring depends critically on the number of offspring competing for food due to the discrete nature of resource used for larval nutrition (vertebrate carcasses). In one species, brood size and body size are correlated with population density, and appear to be phenotypically plastic. We investigated potential proximate causes of between-population variation in brood size and body size in two species, Nicrophorus vespilloides and Nicrophorus defodiens. Our first experiment supported the notion that brood size is phenotypically plastic, because it was affected by environmental variation in adult nutritional condition. We found that the pre-breeding nutritional status of female N. vespilloides affected the number of eggs they laid, the number of surviving larvae in their broods, and the body size of their offspring. We do not know whether this plasticity is adaptive because greater offspring body size confers an advantage in contests over breeding resources, or whether starved females are constrained to produce smaller clutches because they cannot fully compensate for their poor pre-breeding nutritional status by feeding from the carcass. Our second experiment documents that brood size, specifically the infanticidal brood-size adjustment behavior, has undergone genetic differentiation between two populations of N. defodiens. Even under identical breeding conditions with identical numbers of first-instar larvae, females descended from the two populations produced broods of different size with corresponding differences in offspring body size.


Asunto(s)
Fenómenos Fisiológicos Nutricionales de los Animales , Tamaño Corporal/fisiología , Escarabajos/genética , Escarabajos/fisiología , Variación Genética , Animales , Tamaño de la Nidada
10.
Evolution ; 57(1): 173-6, 2003 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-12643579

RESUMEN

Although sperm competition is a pervasive selective force shaping the reproductive tactics of males, the mechanisms underlying different patterns of sperm precedence remain obscure. Parker et al. (1990) developed a series of linear models designed to identify two of the more basic mechanisms: sperm lotteries and sperm displacement; the models can be tested experimentally by manipulating the relative numbers of sperm transferred by rival males and determining the paternity of offspring. Here we show that tests of the model derived for sperm lotteries can result in misleading inferences about the underlying mechanism of sperm precedence because the required inverse transformations may lead to a violation of fundamental assumptions of linear regression. We show that this problem can be remedied by reformulating the model using the actual numbers of offspring sired by each male, and log-transforming both sides of the resultant equation. Reassessment of data from a previous study (Sakaluk and Eggert 1996) using the corrected version of the model revealed that we should not have excluded a simple sperm lottery as a possible mechanism of sperm competition in decorated crickets, Gryllodes sigillatus.


Asunto(s)
Espermatozoides/fisiología , Animales , Gryllidae/fisiología , Modelos Lineales , Masculino
11.
Evolution ; 56(10): 1999-2007, 2002 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-12449487

RESUMEN

Females, by mating with more than one male in their lifetime, may reduce their risk of receiving sperm from genetically incompatible sires or increase their prospects of obtaining sperm from genetically superior sires. Although there is evidence of both kinds of genetic benefits in crickets, their relative importance remains unclear, and the extent to which experimentally manipulated levels of polyandry in the laboratory correspond to those that occur in nature remain unknown. We measured lifetime polyandry of free-living female decorated crickets, Gryllodes sigillatus, and conducted an experiment to determine whether polyandry leads to an increase in offspring viability. We experimentally manipulated both the levels of polyandry and opportunities for females to select among males, randomly allocating the offspring of experimental females to high-food-stress or low-food-stress regimes to complete their development. Females exhibited a high degree of polyandry, mating on average with more than seven different males during their lifetime and up to as many as 15. Polyandry had no effect on either the developmental time or survival of offspring. However, polyandrous females produced significantly heavier sons than those of monandrous females, although there was no difference in the adult mass of daughters. There was no significant interaction between mating treatment and offspring nutritional regimen in their effects on offspring mass, suggesting that benefits accruing to female polyandry are independent of the environment in which offspring develop. The sex difference in the extent to which male and female offspring benefit via their mother's polyandry may reflect possible differences in the fitness returns from sons and daughters. The larger mass gain shown by sons of polyandrous females probably leads to their increased reproductive success, either because of their increased success in sperm competition or because of their increased life span.


Asunto(s)
Gryllidae/anatomía & histología , Gryllidae/fisiología , Inseminación/fisiología , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Evolución Biológica , Femenino , Masculino , Factores Sexuales , Conducta Sexual Animal
12.
Evolution ; 50(2): 694-703, 1996 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28568960

RESUMEN

Manipulation of ejaculates is believed to be an important avenue of female choice throughout the animal kingdom, but evidence of its importance to sexual selection remains scarce. In crickets, such manipulation is manifest in the premature removal of the externally attached spermatophore, which may afford females an important means of postcopulatory mate choice. We tested the hypothesis that premature spermatophore removal contributes significantly to intraspecific variation in sperm precedence by (1) experimentally manipulating spermatophore attachment durations of competing male Gryllodes sigillatus and (2) employing protein electrophoresis to determine the paternity of doubly mated females. The relative spermatophore attachment durations of competing males had a significant influence on male paternity, but the pattern of sperm precedence deviated significantly from the predictions of an ideal lottery. Instead, paternity data and morphological evidence accorded best with a model of partial sperm displacement derived here. Our model is similar to a displacement model of Parker et al. in that sperm of the second male mixes instantaneously with that of the first throughout the displacement process, but the novel feature of our model is that the number of sperm displaced is only a fraction of the number of sperm transferred by the second male. Regardless of the underlying mechanism, female G. sigillatus can clearly alter the paternity of their offspring through their spermatophore-removal behavior, and employ such cryptic choice in favoring larger males and those providing larger courtship food gifts. We discuss how female control of sperm transfer and intraspecific variation in sperm precedence may be important precursors to the evolution of gift giving in insects.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA