Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Nat Microbiol ; 9(7): 1655-1660, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38877224

RESUMEN

Biofuel production by Clostridium acetobutylicum is compromised by strain degeneration due to loss of its pSOL1 megaplasmid. Here we used engineering biology to stably integrate pSOL1 into the chromosome together with a synthetic isopropanol pathway. In a membrane bioreactor continuously fed with glucose mineral medium, the final strain produced advanced biofuels, n-butanol and isopropanol, at high yield (0.31 g g-1), titre (15.4 g l-1) and productivity (15.5 g l-1 h-1) without degeneration.


Asunto(s)
1-Butanol , 2-Propanol , Biocombustibles , Reactores Biológicos , Clostridium acetobutylicum , Ingeniería Metabólica , Plásmidos , Clostridium acetobutylicum/genética , Clostridium acetobutylicum/metabolismo , Biocombustibles/microbiología , Plásmidos/genética , Reactores Biológicos/microbiología , 1-Butanol/metabolismo , 2-Propanol/metabolismo , Fermentación , Glucosa/metabolismo , Cromosomas Bacterianos/genética
2.
J Infect ; 88(6): 106164, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38692359

RESUMEN

OBJECTIVES: We evaluated Nanopore sequencing for influenza surveillance. METHODS: Influenza A and B PCR-positive samples from hospital patients in Oxfordshire, UK, and a UK-wide population survey from winter 2022-23 underwent Nanopore sequencing following targeted rt-PCR amplification. RESULTS: From 941 infections, successful sequencing was achieved in 292/388 (75 %) available Oxfordshire samples: 231 (79 %) A/H3N2, 53 (18 %) A/H1N1, and 8 (3 %) B/Victoria and in 53/113 (47 %) UK-wide samples. Sequencing was more successful at lower Ct values. Most same-sample replicate sequences had identical haemagglutinin segments (124/141, 88 %); 36/39 (92 %) Illumina vs. Nanopore comparisons were identical, and 3 (8 %) differed by 1 variant. Comparison of Oxfordshire and UK-wide sequences showed frequent inter-regional transmission. Infections were closely-related to 2022-23 vaccine strains. Only one sample had a neuraminidase inhibitor resistance mutation. 849/941 (90 %) Oxfordshire infections were community-acquired. 63/88 (72 %) potentially healthcare-associated cases shared a hospital ward with ≥ 1 known infectious case. 33 epidemiologically-plausible transmission links had sequencing data for both source and recipient: 8 were within ≤ 5 SNPs, of these, 5 (63 %) involved potential sources that were also hospital-acquired. CONCLUSIONS: Nanopore influenza sequencing was reproducible and antiviral resistance rare. Inter-regional transmission was common; most infections were genomically similar. Hospital-acquired infections are likely an important source of nosocomial transmission and should be prioritised for infection prevention and control.


Asunto(s)
Virus de la Influenza B , Gripe Humana , Secuenciación de Nanoporos , Humanos , Gripe Humana/epidemiología , Gripe Humana/virología , Reino Unido/epidemiología , Secuenciación de Nanoporos/métodos , Virus de la Influenza B/genética , Virus de la Influenza B/aislamiento & purificación , Virus de la Influenza B/clasificación , Femenino , Masculino , Virus de la Influenza A/genética , Virus de la Influenza A/clasificación , Virus de la Influenza A/aislamiento & purificación , Adulto , Persona de Mediana Edad , Adolescente , Anciano , Adulto Joven , Niño , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H1N1 del Virus de la Influenza A/aislamiento & purificación , Subtipo H3N2 del Virus de la Influenza A/genética , Subtipo H3N2 del Virus de la Influenza A/aislamiento & purificación , Subtipo H3N2 del Virus de la Influenza A/clasificación
3.
BMC Med ; 22(1): 143, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38532381

RESUMEN

BACKGROUND: Syndromic surveillance often relies on patients presenting to healthcare. Community cohorts, although more challenging to recruit, could provide additional population-wide insights, particularly with SARS-CoV-2 co-circulating with other respiratory viruses. METHODS: We estimated the positivity and incidence of SARS-CoV-2, influenza A/B, and RSV, and trends in self-reported symptoms including influenza-like illness (ILI), over the 2022/23 winter season in a broadly representative UK community cohort (COVID-19 Infection Survey), using negative-binomial generalised additive models. We estimated associations between test positivity and each of the symptoms and influenza vaccination, using adjusted logistic and multinomial models. RESULTS: Swabs taken at 32,937/1,352,979 (2.4%) assessments tested positive for SARS-CoV-2, 181/14,939 (1.2%) for RSV and 130/14,939 (0.9%) for influenza A/B, varying by age over time. Positivity and incidence peaks were earliest for RSV, then influenza A/B, then SARS-CoV-2, and were highest for RSV in the youngest and for SARS-CoV-2 in the oldest age groups. Many test positives did not report key symptoms: middle-aged participants were generally more symptomatic than older or younger participants, but still, only ~ 25% reported ILI-WHO and ~ 60% ILI-ECDC. Most symptomatic participants did not test positive for any of the three viruses. Influenza A/B-positivity was lower in participants reporting influenza vaccination in the current and previous seasons (odds ratio = 0.55 (95% CI 0.32, 0.95)) versus neither season. CONCLUSIONS: Symptom profiles varied little by aetiology, making distinguishing SARS-CoV-2, influenza and RSV using symptoms challenging. Most symptoms were not explained by these viruses, indicating the importance of other pathogens in syndromic surveillance. Influenza vaccination was associated with lower rates of community influenza test positivity.


Asunto(s)
COVID-19 , Gripe Humana , Infecciones por Virus Sincitial Respiratorio , Virosis , Persona de Mediana Edad , Humanos , Gripe Humana/epidemiología , SARS-CoV-2 , Estaciones del Año , Autoinforme , Virus Sincitiales Respiratorios , Reino Unido , Infecciones por Virus Sincitial Respiratorio/epidemiología
4.
J Microbiol Methods ; 189: 106323, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34506812

RESUMEN

Cupriavidus necator H16 can convert CO2 into industrial chemicals and fuels. To facilitate its engineering, we designed, built and tested the pMTL70000 modular plasmids comprising standardised Cupriavidus and E. coli replicons, selectable markers and application specific modules. Plasmids were characterised in terms of transmissibility, stability, copy number and compatibility.


Asunto(s)
Proteínas Bacterianas/genética , Cupriavidus necator/genética , Electroporación/métodos , Vectores Genéticos , Plásmidos/genética , Escherichia coli/genética , Regiones Promotoras Genéticas
5.
Metab Eng ; 67: 308-320, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34245888

RESUMEN

Ethylene is a small hydrocarbon gas widely used in the chemical industry. Annual worldwide production currently exceeds 150 million tons, producing considerable amounts of CO2 contributing to climate change. The need for a sustainable alternative is therefore imperative. Ethylene is natively produced by several different microorganisms, including Pseudomonas syringae pv. phaseolicola via a process catalyzed by the ethylene-forming enzyme (EFE), subsequent heterologous expression of EFE has led to ethylene production in non-native bacterial hosts including Escherichia coli and cyanobacteria. However, solubility of EFE and substrate availability remain rate-limiting steps in biological ethylene production. We employed a combination of genome-scale metabolic modelling, continuous fermentation, and protein evolution to enable the accelerated development of a high efficiency ethylene producing E. coli strain, yielding a 49-fold increase in production, the most significant improvement reported to date. Furthermore, we have clearly demonstrated that this increased yield resulted from metabolic adaptations that were uniquely linked to EFE (wild type versus mutant). Our findings provide a novel solution to deregulate metabolic bottlenecks in key pathways, which can be readily applied to address other engineering challenges.


Asunto(s)
Escherichia coli , Biología de Sistemas , Escherichia coli/genética , Etilenos , Laboratorios , Ingeniería Metabólica , Pseudomonas syringae/genética
6.
Microbiol Resour Announc ; 8(37)2019 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-31515345

RESUMEN

The hydrogen-utilizing strain Cupriavidus necator H16 (DSM 428) was sequenced using a combination of PacBio and Illumina sequencing. Annotation of this strain reveals 6,543 protein-coding genes, 263 pseudogenes, 64 tRNA genes, and 15 rRNA genes.

7.
Appl Environ Microbiol ; 84(19)2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30030234

RESUMEN

A robust and predictable control of gene expression plays an important role in synthetic biology and biotechnology applications. Development and quantitative evaluation of functional genetic elements, such as constitutive and inducible promoters as well as ribosome binding sites (RBSs), are required. In this study, we designed, built, and tested promoters and RBSs for controlling gene expression in the model lithoautotroph Cupriavidus necator H16. A series of variable-strength, insulated, constitutive promoters exhibiting predictable activity within a >700-fold dynamic range was compared to the native P phaC , with the majority of promoters displaying up to a 9-fold higher activity. Positively (AraC/P araBAD -l-arabinose and RhaRS/P rhaBAD -l-rhamnose) and negatively (AcuR/P acuRI -acrylate and CymR/P cmt -cumate) regulated inducible systems were evaluated. By supplying different concentrations of inducers, a >1,000-fold range of gene expression levels was achieved. Application of inducible systems for controlling expression of the isoprene synthase gene ispS led to isoprene yields that exhibited a significant correlation to the reporter protein synthesis levels. The impact of designed RBSs and other genetic elements, such as mRNA stem-loop structure and A/U-rich sequence, on gene expression was also evaluated. A second-order polynomial relationship was observed between the RBS activities and isoprene yields. This report presents quantitative data on regulatory genetic elements and expands the genetic toolbox of C. necatorIMPORTANCE This report provides tools for robust and predictable control of gene expression in the model lithoautotroph C. necator H16. To address a current need, we designed, built, and tested promoters and RBSs for controlling gene expression in C. necator H16. To answer a question on how existing and newly developed inducible systems compare, two positively (AraC/P araBAD -l-arabinose and RhaRS/P rhaBAD -l-rhamnose) and two negatively (AcuR/P acuRI -acrylate and CymR/P cmt -cumate) regulated inducible systems were quantitatively evaluated and their induction kinetics analyzed. To establish if gene expression can be further improved, the effect of genetic elements, such as mRNA stem-loop structure and A/U-rich sequence, on gene expression was evaluated. Using isoprene production as an example, the study investigated if and to what extent chemical compound yield correlates to the level of gene expression of product-synthesizing enzyme.


Asunto(s)
Cupriavidus necator/genética , Regulación Bacteriana de la Expresión Génica , Secuencias Reguladoras de Ácidos Nucleicos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Secuencia de Bases , Cupriavidus necator/química , Cupriavidus necator/metabolismo , ADN Bacteriano/química , ADN Bacteriano/genética , Conformación de Ácido Nucleico , Regiones Promotoras Genéticas , Ramnosa/metabolismo
8.
Methods Mol Biol ; 1476: 35-52, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27507332

RESUMEN

Precise manipulation (in-frame deletions and substitutions) of the Clostridium difficile genome is possible through a two-stage process of single-crossover integration and subsequent isolation of double-crossover excision events using replication-defective plasmids that carry a counterselection marker. Use of a codA (cytosine deaminase) or pyrE (orotate phosphoribosyltransferase) as counter selection markers appears equally effective, but there is considerable merit in using a pyrE mutant as the host as, through the use of allele-coupled exchange (ACE) vectors, mutants created (by whatever means) can be rapidly complemented concomitant with restoration of the pyrE allele. This avoids the phenotypic effects frequently observed with high-copy-number plasmids and dispenses with the need to add antibiotic to ensure plasmid retention.


Asunto(s)
Alelos , Secuencia de Bases , Clostridioides difficile/genética , Edición Génica/métodos , Genoma Bacteriano , Orotato Fosforribosiltransferasa/genética , Eliminación de Secuencia , Proteínas Bacterianas/genética , Citosina Desaminasa/genética , ADN Bacteriano/genética , Expresión Génica , Prueba de Complementación Genética , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Plásmidos/química , Plásmidos/metabolismo , Mutación Puntual , Análisis de Secuencia de ADN
9.
Anaerobe ; 41: 104-112, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27234263

RESUMEN

Clostridium species are both heroes and villains. Some cause serious human and animal diseases, those present in the gut microbiota generally contribute to health and wellbeing, while others represent useful industrial chassis for the production of chemicals and fuels. To understand, counter or exploit, there is a fundamental requirement for effective systems that may be used for directed or random genome modifications. We have formulated a simple roadmap whereby the necessary gene systems maybe developed and deployed. At its heart is the use of 'pseudo-suicide' vectors and the creation of a pyrE mutant (a uracil auxotroph), initially aided by ClosTron technology, but ultimately made using a special form of allelic exchange termed ACE (Allele-Coupled Exchange). All mutants, regardless of the mutagen employed, are made in this host. This is because through the use of ACE vectors, mutants can be rapidly complemented concomitant with correction of the pyrE allele and restoration of uracil prototrophy. This avoids the phenotypic effects frequently observed with high copy number plasmids and dispenses with the need to add antibiotic to ensure plasmid retention. Once available, the pyrE host may be used to stably insert all manner of application specific modules. Examples include, a sigma factor to allow deployment of a mariner transposon, hydrolases involved in biomass deconstruction and therapeutic genes in cancer delivery vehicles. To date, provided DNA transfer is obtained, we have not encountered any clostridial species where this technology cannot be applied. These include, Clostridium difficile, Clostridium acetobutylicum, Clostridium beijerinckii, Clostridium botulinum, Clostridium perfringens, Clostridium sporogenes, Clostridium pasteurianum, Clostridium ljungdahlii, Clostridium autoethanogenum and even Geobacillus thermoglucosidasius.


Asunto(s)
Infecciones por Clostridium/microbiología , Clostridium/genética , Ingeniería Genética , Animales , Genes Bacterianos , Vectores Genéticos , Humanos , Mutagénesis , Mutación , Replicón
10.
Biotechnol Biofuels ; 9: 4, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26732067

RESUMEN

BACKGROUND: Clostridium acetobutylicum represents a paradigm chassis for the industrial production of the biofuel biobutanol and a focus for metabolic engineering. We have previously developed procedures for the creation of in-frame, marker-less deletion mutants in the pathogen Clostridium difficile based on the use of pyrE and codA genes as counter selection markers. In the current study we sought to test their suitability for use in C. acetobutylicum. RESULTS: Both systems readily allowed the isolation of in-frame deletions of the C. acetobutylicum ATCC 824 spo0A and the cac824I genes, leading to a sporulation minus phenotype and improved transformation, respectively. The pyrE-based system was additionally used to inactivate a putative glycogen synthase (CA_C2239, glgA) and the pSOL1 amylase gene (CA_P0168, amyP), leading to lack of production of granulose and amylase, respectively. Their isolation provided the opportunity to make use of one of the key pyrE system advantages, the ability to rapidly complement mutations at appropriate gene dosages in the genome. In both cases, their phenotypes were restored in terms of production of granulose (glgA) and amylase (amyP). Genome re-sequencing of the ATCC 824 COSMIC consortium laboratory strain used revealed the presence of 177 SNVs and 49 Indels, including a 4916-bp deletion in the pSOL1 megaplasmid. A total of 175 SNVs and 48 Indels were subsequently shown to be present in an 824 strain re-acquired (Nov 2011) from the ATCC and are, therefore, most likely errors in the published genome sequence, NC_003030 (chromosome) and NC_001988 (pSOL1). CONCLUSIONS: The codA or pyrE counter selection markers appear equally effective in isolating deletion mutants, but there is considerable merit in using a pyrE mutant as the host as, through the use of ACE (Allele-Coupled Exchange) vectors, mutants created (by whatever means) can be rapidly complemented concomitant with restoration of the pyrE allele. This avoids the phenotypic effects frequently observed with high copy number plasmids and dispenses with the need to add antibiotic to ensure plasmid retention. Our study also revealed a surprising number of errors in the ATCC 824 genome sequence, while at the same time emphasising the need to re-sequence commonly used laboratory strains.

11.
Oncotarget ; 5(7): 1761-9, 2014 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-24732092

RESUMEN

Spores of some species of the strictly anaerobic bacteria Clostridium naturally target and partially lyse the hypoxic cores of tumors, which tend to be refractory to conventional therapies. The anti-tumor effect can be augmented by engineering strains to convert a non-toxic prodrug into a cytotoxic drug specifically at the tumor site by expressing a prodrug-converting enzyme (PCE). Safe doses of the favored prodrug CB1954 lead to peak concentrations of 6.3 µM in patient sera, but at these concentration(s) known nitroreductase (NTR) PCEs for this prodrug show low activity. Furthermore, efficacious and safe Clostridium strains that stably express a PCE have not been reported. Here we identify a novel nitroreductase from Neisseria meningitidis, NmeNTR, which is able to activate CB1954 at clinically-achievable serum concentrations. An NmeNTR expression cassette, which does not contain an antibiotic resistance marker, was stably localized to the chromosome of Clostridium sporogenes using a new integration method, and the strain was disabled for safety and containment by making it a uracil auxotroph. The efficacy of Clostridium-Directed Enzyme Prodrug Therapy (CDEPT) using this system was demonstrated in a mouse xenograft model of human colon carcinoma. Substantial tumor suppression was achieved, and several animals were cured. These encouraging data suggest that the novel enzyme and strain engineering approach represent a promising platform for the clinical development of CDEPT.


Asunto(s)
Antineoplásicos/metabolismo , Aziridinas/metabolismo , Terapia Biológica , Carcinoma/terapia , Clostridium/enzimología , Neoplasias del Colon/terapia , Nitrorreductasas/metabolismo , Esporas Bacterianas/enzimología , Animales , Antineoplásicos/sangre , Aziridinas/sangre , Terapia Biológica/efectos adversos , Clostridium/genética , Ratones , Neisseria meningitidis/enzimología , Neisseria meningitidis/genética , Nitrorreductasas/genética , Nitrorreductasas/aislamiento & purificación , Organismos Modificados Genéticamente , Plásmidos , Profármacos/metabolismo , Ingeniería de Proteínas , Ensayos Antitumor por Modelo de Xenoinjerto
12.
PLoS One ; 8(2): e56051, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23405251

RESUMEN

Sophisticated genetic tools to modify essential biological processes at the molecular level are pivotal in elucidating the molecular pathogenesis of Clostridium difficile, a major cause of healthcare associated disease. Here we have developed an efficient procedure for making precise alterations to the C. difficile genome by pyrE-based allelic exchange. The robustness and reliability of the method was demonstrated through the creation of in-frame deletions in three genes (spo0A, cwp84, and mtlD) in the non-epidemic strain 630Δerm and two genes (spo0A and cwp84) in the epidemic PCR Ribotype 027 strain, R20291. The system is reliant on the initial creation of a pyrE deletion mutant, using Allele Coupled Exchange (ACE), that is auxotrophic for uracil and resistant to fluoroorotic acid (FOA). This enables the subsequent modification of target genes by allelic exchange using a heterologous pyrE allele from Clostridium sporogenes as a counter-/negative-selection marker in the presence of FOA. Following modification of the target gene, the strain created is rapidly returned to uracil prototrophy using ACE, allowing mutant phenotypes to be characterised in a PyrE proficient background. Crucially, wild-type copies of the inactivated gene may be introduced into the genome using ACE concomitant with correction of the pyrE allele. This allows complementation studies to be undertaken at an appropriate gene dosage, as opposed to the use of multicopy autonomous plasmids. The rapidity of the 'correction' method (5-7 days) makes pyrE(-) strains attractive hosts for mutagenesis studies.


Asunto(s)
Proteínas Bacterianas/genética , Clostridioides difficile/genética , Vectores Genéticos/genética , Genoma Bacteriano/genética , Alelos , Clostridioides difficile/crecimiento & desarrollo , ADN Bacteriano/genética , Prueba de Complementación Genética , Fenotipo , Eliminación de Secuencia
13.
Nucleic Acids Res ; 40(8): e59, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22259038

RESUMEN

Most bacteria can only be transformed with circular plasmids, so robust DNA integration methods for these rely upon selection of single-crossover clones followed by counter-selection of double-crossover clones. To overcome the limited availability of heterologous counter-selection markers, here we explore novel DNA integration strategies that do not employ them, and instead exploit (i) activation or inactivation of genes leading to a selectable phenotype, and (ii) asymmetrical regions of homology to control the order of recombination events. We focus here on the industrial biofuel-producing bacterium Clostridium acetobutylicum, which previously lacked robust integration tools, but the approach we have developed is broadly applicable. Large sequences can be delivered in a series of steps, as we demonstrate by inserting the chromosome of phage lambda (minus a region apparently unstable in Escherichia coli in our cloning context) into the chromosome of C. acetobutylicum in three steps. This work should open the way to reliable integration of DNA including large synthetic constructs in diverse microorganisms.


Asunto(s)
Cromosomas Bacterianos , Plásmidos , Transformación Bacteriana , Alcohol Deshidrogenasa/genética , Alcohol Deshidrogenasa/metabolismo , Bacteriófago lambda/genética , Secuencia de Bases , Clostridium acetobutylicum/genética , ADN/química , Marcadores Genéticos , Genoma Viral , Datos de Secuencia Molecular , Orotato Fosforribosiltransferasa/genética , Regiones Promotoras Genéticas
14.
J Microbiol Methods ; 80(1): 49-55, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19891996

RESUMEN

The recent development of the ClosTron Group II intron directed mutagenesis tool for Clostridium has advanced genetics in this genus, and here we present several significant improvements. We have shown how marker re-cycling can be used to construct strains with multiple mutations, demonstrated using FLP/FRT in Clostridium acetobutylicum; tested the capacity of the system for the delivery of transgenes to the chromosome of Clostridium sporogenes, which proved feasible for 1.0kbp transgenes in addition to a marker; and extended the host range of the system, constructing mutants in Clostridium beijerinckii and, for the first time, in a B1/NAP1/027 'epidemic' strain of Clostridium difficile. Automated intron design bioinformatics are now available free-of-charge at our website http://clostron.com; the out-sourced construction of re-targeted intron plasmids has become cost-effective as well as rapid; and the combination of constitutive intron expression with direct selection for intron insertions has made mutant isolation trivial. These developments mean mutants can now be constructed with very little time and effort for the researcher. Those who prefer to construct plasmids in-house are no longer reliant on a commercial kit, as a mixture of two new plasmids provides unlimited template for intron re-targeting by Splicing by Overlap Extension (SOE) PCR. The new ClosTron plasmids also offer blue-white screening and other options for identification of recombinant plasmids. The improved ClosTron system supersedes the prototype plasmid pMTL007 and the original method, and exploits the potential of Group II introns more fully.


Asunto(s)
Clostridium/genética , Técnicas Genéticas , Mutagénesis , Intrones , Plásmidos/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA