Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Base de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Mol Biosyst ; 11(5): 1260-70, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25720604

RESUMEN

LNA-containing DNA aptamers against CD73 (human ecto-5'-nucleotidase), a protein frequently overexpressed in solid tumours, were isolated by SELEX. A pre-defined stem-loop library, containing LNA in the forward primer region, was enriched with CD73 binding sequences through six rounds of SELEX with recombinant his-tagged CD73 immobilised on anti-his plates. Enriched pools isolated from rounds one, three and six were subjected to next-generation sequencing and analysed for enrichment using custom bioinformatics software. The software identified aptamer sequences via the primers and then performed several steps including sequence unification, clustering and alignment to identify enriched sequences. Three enriched sequences were synthesised for further analysis, two of which showed sequence similarities. These sequences exhibited binding to the recombinant CD73 with KD values of 10 nM and 3.5 nM when tested by surface plasmon resonance. Truncated variants of these aptamers and variants where the LNA nucleotides were substituted for the DNA equivalent also exhibited affinity for the recombinant CD73 in the low nanomolar range. In enzyme inhibition assays with recombinant CD73 the aptamer sequences were able to decrease the activity of the protein. However, the aptamers exhibited no binding to cellular CD73 by flow cytometry analysis likely since the epitope recognised by the aptamer was not available for binding on the cellular protein.


Asunto(s)
5'-Nucleotidasa/antagonistas & inhibidores , 5'-Nucleotidasa/metabolismo , Aptámeros de Nucleótidos/química , Aptámeros de Nucleótidos/farmacología , Proteínas Nucleares/química , Fosfoproteínas/química , Proteínas Recombinantes , 5'-Nucleotidasa/química , Secuencia de Bases , Línea Celular , Biología Computacional/métodos , Activación Enzimática/efectos de los fármacos , Citometría de Flujo , Biblioteca de Genes , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Conformación de Ácido Nucleico , Unión Proteica , Resonancia por Plasmón de Superficie
2.
Biochem J ; 437(2): 231-41, 2011 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-21539519

RESUMEN

ACBP (acyl-CoA-binding protein) is a small primarily cytosolic protein that binds acyl-CoA esters with high specificity and affinity. ACBP has been identified in all eukaryotic species, indicating that it performs a basal cellular function. However, differential tissue expression and the existence of several ACBP paralogues in many eukaryotic species indicate that these proteins serve distinct functions. The nematode Caenorhabditis elegans expresses seven ACBPs: four basal forms and three ACBP domain proteins. We find that each of these paralogues is capable of complementing the growth of ACBP-deficient yeast cells, and that they exhibit distinct temporal and tissue expression patterns in C. elegans. We have obtained loss-of-function mutants for six of these forms. All single mutants display relatively subtle phenotypes; however, we find that functional loss of ACBP-1 leads to reduced triacylglycerol (triglyceride) levels and aberrant lipid droplet morphology and number in the intestine. We also show that worms lacking ACBP-2 show a severe decrease in the ß-oxidation of unsaturated fatty acids. A quadruple mutant, lacking all basal ACBPs, is slightly developmentally delayed, displays abnormal intestinal lipid storage, and increased ß-oxidation. Collectively, the present results suggest that each of the ACBP paralogues serves a distinct function in C. elegans.


Asunto(s)
Inhibidor de la Unión a Diazepam/metabolismo , Isoformas de Proteínas/genética , Secuencia de Aminoácidos , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/fisiología , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Ácidos Grasos Insaturados/metabolismo , Metabolismo de los Lípidos , Datos de Secuencia Molecular , Mutación , Isoformas de Proteínas/metabolismo , Receptores Citoplasmáticos y Nucleares/fisiología , Inanición/metabolismo , Factores de Transcripción/fisiología , Triglicéridos/metabolismo
3.
J Biol Chem ; 286(5): 3460-72, 2011 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-21106527

RESUMEN

The acyl-CoA-binding protein (ACBP)/diazepam binding inhibitor is an intracellular protein that binds C(14)-C(22) acyl-CoA esters and is thought to act as an acyl-CoA transporter. In vitro analyses have indicated that ACBP can transport acyl-CoA esters between different enzymatic systems; however, little is known about the in vivo function in mammalian cells. We have generated mice with targeted disruption of ACBP (ACBP(-/-)). These mice are viable and fertile and develop normally. However, around weaning, the ACBP(-/-) mice go through a crisis with overall weakness and a slightly decreased growth rate. Using microarray analysis, we show that the liver of ACBP(-/-) mice displays a significantly delayed adaptation to weaning with late induction of target genes of the sterol regulatory element-binding protein (SREBP) family. As a result, hepatic de novo cholesterogenesis is decreased at weaning. The delayed induction of SREBP target genes around weaning is caused by a compromised processing and decreased expression of SREBP precursors, leading to reduced binding of SREBP to target sites in chromatin. In conclusion, lack of ACBP interferes with the normal metabolic adaptation to weaning and leads to delayed induction of the lipogenic gene program in the liver.


Asunto(s)
Adaptación Fisiológica , Inhibidor de la Unión a Diazepam/metabolismo , Hígado/metabolismo , Destete , Animales , Animales Recién Nacidos , Colesterol/biosíntesis , Cromatina/metabolismo , Perfilación de la Expresión Génica , Hígado/fisiología , Metabolismo , Ratones , Ratones Noqueados , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética
4.
Cell Metab ; 12(4): 398-410, 2010 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-20889131

RESUMEN

Acyl-CoA synthases are important for lipid synthesis and breakdown, generation of signaling molecules, and lipid modification of proteins, highlighting the challenge of understanding metabolic pathways within intact organisms. From a C. elegans mutagenesis screen, we found that loss of ACS-3, a long-chain acyl-CoA synthase, causes enhanced intestinal lipid uptake, de novo fat synthesis, and accumulation of enlarged, neutral lipid-rich intestinal depots. Here, we show that ACS-3 functions in seam cells, epidermal cells anatomically distinct from sites of fat uptake and storage, and that acs-3 mutant phenotypes require the nuclear hormone receptor NHR-25, a key regulator of C. elegans molting. Our findings suggest that ACS-3-derived long-chain fatty acyl-CoAs, perhaps incorporated into complex ligands such as phosphoinositides, modulate NHR-25 function, which in turn regulates an endocrine program of lipid uptake and synthesis. These results reveal a link between acyl-CoA synthase function and an NR5A family nuclear receptor in C. elegans.


Asunto(s)
Caenorhabditis elegans/metabolismo , Coenzima A Ligasas/fisiología , Proteínas de Unión al ADN/fisiología , Grasas/metabolismo , Factores de Transcripción/fisiología , Animales , Coenzima A Ligasas/genética , Mucosa Intestinal/metabolismo , Lípidos/biosíntesis , Mutagénesis Sitio-Dirigida , Receptores Citoplasmáticos y Nucleares
5.
Cell Metab ; 7(6): 533-44, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18522834

RESUMEN

We investigated serotonin signaling in C. elegans as a paradigm for neural regulation of energy balance and found that serotonergic regulation of fat is molecularly distinct from feeding regulation. Serotonergic feeding regulation is mediated by receptors whose functions are not required for fat regulation. Serotonergic fat regulation is dependent on a neurally expressed channel and a G protein-coupled receptor that initiate signaling cascades that ultimately promote lipid breakdown at peripheral sites of fat storage. In turn, intermediates of lipid metabolism generated in the periphery modulate feeding behavior. These findings suggest that, as in mammals, C. elegans feeding behavior is regulated by extrinsic and intrinsic cues. Moreover, obesity and thinness are not solely determined by feeding behavior. Rather, feeding behavior and fat metabolism are coordinated but independent responses of the nervous system to the perception of nutrient availability.


Asunto(s)
Tejido Adiposo/metabolismo , Caenorhabditis elegans/metabolismo , Conducta Alimentaria , Serotonina/fisiología , Animales , Metabolismo Energético , Metabolismo de los Lípidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA