Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 157
Filtrar
Más filtros

Base de datos
Tipo del documento
Intervalo de año de publicación
1.
bioRxiv ; 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38853889

RESUMEN

Objectives: Disialoganglioside 2 (GD2), overexpressed by cancers such as melanoma and neuroblastoma, is a tumor antigen for targeted therapy. The delivery of conventional IgG antibody technologies targeting GD2 is limited clinically by its co-expression on nerves that contributes to toxicity presenting as severe neuropathic pain. To improve the tumor selectivity of current GD2-targeting approaches, a next-generation bispecific antibody targeting GD2 and B7-H3 (CD276) was generated. Methods: Differential expression of human B7-H3 (hB7-H3) was transduced into GD2+ B78 murine melanoma cells and confirmed by flow cytometry. We assessed the avidity and selectivity of our GD2-B7-H3 targeting bispecific antibodies (INV34-6, INV33-2, and INV36-6) towards GD2+/hB7-H3- B78 cells relative to GD2+/hB7-H3+ B78 cells using flow cytometry and competition binding assays, comparing results an anti-GD2 antibody (dinutuximab, DINU). The bispecific antibodies, DINU, and a non-targeted bispecific control (bsAb CTRL) were conjugated with deferoxamine for radiolabeling with Zr-89 (t1/2 = 78.4 h). Using positron emission tomography (PET) studies, we evaluated the in vivo avidity and selectivity of the GD2-B7-H3 targeting bispecific compared to bsAb CTRL and DINU using GD2+/hB7-H3+ and GD2+/hB7-H3- B78 tumor models. Results: Flow cytometry and competition binding assays showed that INV34-6 bound with high avidity to GD2+/hB7-H3+ B78 cells with high avidity but not GD2+/hB7-H3+ B78 cells. In comparison, no selectivity between cell types was observed for DINU. PET in mice bearing the GD2+/hB7-H3- and GD2+/hB7-H3+ B78 murine tumor showed similar biodistribution in normal tissues for [89Zr]Zr-Df-INV34-6, [89Zr]Zr-Df-bsAb CTRL, and [89Zr]Zr-Df-DINU. Importantly, [89Zr]Zr-Df-INV34-6 tumor uptake was selective to GD2+/hB7-H3+ B78 over GD2+/hB7-H3- B78 tumors, and substantially higher to GD2+/hB7-H3+ B78 than the non-targeted [89Zr]Zr-Df-bsAb CTRL control. [89Zr]Zr-Df-DINU displayed similar uptake in both GD2+ tumor models, with uptake comparable to [89Zr]Zr-Df-INV34-6 in the GD2+/hB7-H3+ B78 model. Conclusion: The GD2-B7-H3 targeting bispecific antibodies successfully improved selectivity to cells expressing both antigens. This approach should address the severe toxicities associated with GD2-targeting therapies by reducing off-tumor GD2 binding in nerves. Continued improvements in bispecific antibody technologies will continue to transform the therapeutic biologics landscape.

2.
J Nucl Med ; 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38871388

RESUMEN

The development of theranostic radiotracers relies on their binding to specific molecular markers of a particular disease and the use of corresponding radiopharmaceutical pairs thereafter. This study reports the use of multiamine macrocyclic moieties (MAs), as linkers or chelators, in tracers targeting the neurotensin receptor-1 (NTSR-1). The goal is to achieve elevated tumor uptake, minimal background interference, and prolonged tumor retention in NTSR-1-positive tumors. Methods: We synthesized a series of neurotensin antagonists bearing MA linkers and metal chelators. The MA unit is hypothesized to establish a strong interaction with the cell membrane, and the addition of a second chelator may enhance water solubility, consequently reducing liver uptake. Small-animal PET/CT imaging of [64Cu]Cu-DOTA-SR-3MA, [64Cu]Cu-NT-CB-NOTA, [68Ga]Ga-NT-CB-NOTA, [64Cu]Cu-NT-CB-DOTA, and [64Cu]Cu-NT-Sarcage was acquired at 1, 4, 24, and 48 h after injection using H1299 tumor models. [55Co]Co-NT-CB-NOTA was also tested in HT29 (high NTSR-1 expression) and Caco2 (low NTSR-1 expression) colorectal adenocarcinoma tumor models. Saturation binding assay and internalization of [55Co]Co-NT-CB-NOTA were used to test tracer specificity and internalization in HT29 cells. Results: In vivo PET imaging with [64Cu]Cu-NT-CB-NOTA, [68Ga]Ga-NT-CB-NOTA, and [55Co]Co-NT-CB-NOTA revealed high tumor uptake, high tumor-to-background contrast, and sustained tumor retention (≤48 h after injection) in NTSR-1-positive tumors. Tumor uptake of [64Cu]Cu-NT-CB-NOTA remained at 76.9% at 48 h after injection compared with uptake 1 h after injection in H1299 tumor models, and [55Co]Co-NT-CB-NOTA was retained at 60.2% at 24 h compared with uptake 1 h after injection in HT29 tumor models. [64Cu]Cu-NT-Sarcage also showed high tumor uptake with low background and high tumor retention 48 h after injection Conclusion: Tumor uptake and pharmacokinetic properties of NTSR-1-targeting radiopharmaceuticals were greatly improved when attached with different nitrogen-containing macrocyclic moieties. The study results suggest that NT-CB-NOTA labeled with either 64Cu/67Cu, 55Co/58mCo, or 68Ga (effect of 177Lu in tumor to be determined in future studies) and NT-Sarcage labeled with 64Cu/67Cu or 55Co/58mCo may be excellent diagnostic and therapeutic radiopharmaceuticals targeting NTSR-1-positive cancers. Also, the introduction of MA units to other ligands is warranted in future studies to test the generality of this approach.

3.
J Immunother Cancer ; 12(4)2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38580333

RESUMEN

BACKGROUND: The programmed cell death protein-1 (PD-1)/programmed death receptor ligand 1 (PD-L1) axis critically facilitates cancer cells' immune evasion. Antibody therapeutics targeting the PD-1/PD-L1 axis have shown remarkable efficacy in various tumors. Immuno-positron emission tomography (ImmunoPET) imaging of PD-L1 expression may help reshape solid tumors' immunotherapy landscape. METHODS: By immunizing an alpaca with recombinant human PD-L1, three clones of the variable domain of the heavy chain of heavy-chain only antibody (VHH) were screened, and RW102 with high binding affinity was selected for further studies. ABDRW102, a VHH derivative, was further engineered by fusing RW102 with the albumin binder ABD035. Based on the two targeting vectors, four PD-L1-specific tracers ([68Ga]Ga-NOTA-RW102, [68Ga]Ga-NOTA-ABDRW102, [64Cu]Cu-NOTA-ABDRW102, and [89Zr]Zr-DFO-ABDRW102) with different circulation times were developed. The diagnostic efficacies were thoroughly evaluated in preclinical solid tumor models, followed by a first-in-human translational investigation of [68Ga]Ga-NOTA-RW102 in patients with non-small cell lung cancer (NSCLC). RESULTS: While RW102 has a high binding affinity to PD-L1 with an excellent KD value of 15.29 pM, ABDRW102 simultaneously binds to human PD-L1 and human serum albumin with an excellent KD value of 3.71 pM and 3.38 pM, respectively. Radiotracers derived from RW102 and ABDRW102 have different in vivo circulation times. In preclinical studies, [68Ga]Ga-NOTA-RW102 immunoPET imaging allowed same-day annotation of differential PD-L1 expression with specificity, while [64Cu]Cu-NOTA-ABDRW102 and [89Zr]Zr-DFO-ABDRW102 enabled longitudinal visualization of PD-L1. More importantly, a pilot clinical trial shows the safety and diagnostic value of [68Ga]Ga-NOTA-RW102 immunoPET imaging in patients with NSCLCs and its potential to predict immune-related adverse effects following PD-L1-targeted immunotherapies. CONCLUSIONS: We developed and validated a series of PD-L1-targeted tracers. Initial preclinical and clinical evidence indicates that immunoPET imaging with [68Ga]Ga-NOTA-RW102 holds promise in visualizing differential PD-L1 expression, selecting patients for PD-L1-targeted immunotherapies, and monitoring immune-related adverse effects in patients receiving PD-L1-targeted treatments. TRIAL REGISTRATION NUMBER: NCT06165874.


Asunto(s)
Antígeno B7-H1 , Carcinoma de Pulmón de Células no Pequeñas , Compuestos Heterocíclicos con 1 Anillo , Neoplasias Pulmonares , Anticuerpos de Dominio Único , Humanos , Antígeno B7-H1/efectos de los fármacos , Antígeno B7-H1/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/diagnóstico por imagen , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Radioisótopos de Galio , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Receptor de Muerte Celular Programada 1 , Anticuerpos de Dominio Único/farmacología , Anticuerpos de Dominio Único/uso terapéutico
4.
Sci Adv ; 10(15): eadj1444, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38598637

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is a chronic lung disease resulting in irreversible scarring within the lungs. However, the lack of biomarkers that enable real-time assessment of disease activity remains a challenge in providing efficient clinical decision-making and optimal patient care in IPF. Fibronectin (FN) is highly expressed in fibroblastic foci of the IPF lung where active extracellular matrix (ECM) deposition occurs. Functional upstream domain (FUD) tightly binds the N-terminal 70-kilodalton domain of FN that is crucial for FN assembly. In this study, we first demonstrate the capacity of PEGylated FUD (PEG-FUD) to target FN deposition in human IPF tissue ex vivo. We subsequently radiolabeled PEG-FUD with 64Cu and monitored its spatiotemporal biodistribution via µPET/CT imaging in mice using the bleomycin-induced model of pulmonary injury and fibrosis. We demonstrated [64Cu]Cu-PEG-FUD uptake 3 and 11 days following bleomycin treatment, suggesting that radiolabeled PEG-FUD holds promise as an imaging probe in aiding the assessment of fibrotic lung disease activity.


Asunto(s)
Fibrosis Pulmonar Idiopática , Humanos , Animales , Ratones , Distribución Tisular , Fibrosis Pulmonar Idiopática/inducido químicamente , Fibrosis Pulmonar Idiopática/diagnóstico por imagen , Fibrosis Pulmonar Idiopática/metabolismo , Pulmón/diagnóstico por imagen , Pulmón/metabolismo , Péptidos/metabolismo , Bleomicina
5.
Nat Commun ; 15(1): 3106, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38600068

RESUMEN

In the study, we report an in situ corrosion and mass transport monitoring method developed using a radionuclide tracing technique for the corrosion study of 316L stainless steel (316L SS) in a NaCl-MgCl2 eutectic molten salt natural circulation loop. This method involves cyclotron irradiation of a small tube section with 16 MeV protons, later welds at the hot leg of the molten salt flow loop, generating radionuclides 51Cr, 52Mn, and 56Co at the salt-alloy interface. By measuring the activity variations of these radionuclides at different sections along the loop, both the in situ monitoring of the corrosion attack depth of 316L SS and corrosion product transport and its precipitation in flowing NaCl-MgCl2 molten salt are achieved. While 316L SS is the focus of this study, the technique reported herein can be extended to other structural materials being used in a wide range of industrial applications.

6.
Angew Chem Int Ed Engl ; 63(18): e202319578, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38442302

RESUMEN

The development of inert, biocompatible chelation methods is required to harness the emerging positron emitting radionuclide 45Ti for radiopharmaceutical applications. Herein, we evaluate the Ti(IV)-coordination chemistry of four catechol-based, hexacoordinate chelators using synthetic, structural, computational, and radiochemical approaches. The siderophore enterobactin (Ent) and its synthetic mimic TREN-CAM readily form mononuclear Ti(IV) species in aqueous solution at neutral pH. Radiolabeling studies reveal that Ent and TREN-CAM form mononuclear complexes with the short-lived, positron-emitting radionuclide 45Ti(IV), and do not transchelate to plasma proteins in vitro and exhibit rapid renal clearance in naïve mice. These features guide efforts to target the 45Ti isotope to prostate cancer tissue through the design, synthesis, and evaluation of Ent-DUPA, a small molecule conjugate composed of a prostate specific membrane antigen (PSMA) targeting peptide and a monofunctionalized Ent scaffold. The [45Ti][Ti(Ent-DUPA)]2- complex forms readily at room temperature. In a tumor xenograft model in mice, selective tumor tissue accumulation (8±5 %, n=5), and low off-target uptake in other organs is observed. Overall, this work demonstrates targeted imaging with 45Ti(IV), provides a foundation for advancing the application of 45Ti in nuclear medicine, and reveals that Ent can be repurposed as a 45Ti-complexing cargo for targeted nuclear imaging applications.


Asunto(s)
Neoplasias de la Próstata , Sideróforos , Humanos , Masculino , Animales , Ratones , Sideróforos/química , Enterobactina/metabolismo , Titanio/química , Uso Fuera de lo Indicado , Neoplasias de la Próstata/metabolismo , Radioisótopos
7.
Bioconjug Chem ; 35(3): 389-399, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38470611

RESUMEN

The Mesenchymal Epithelial Transition (MET) receptor tyrosine kinase is upregulated or mutated in 5% of non-small-cell lung cancer (NSCLC) patients and overexpressed in multiple other cancers. We sought to develop a novel single-domain camelid antibody with high affinity for MET that could be used to deliver conjugated payloads to MET expressing cancers. From a naïve camelid variable-heavy-heavy (VHH) domain phage display library, we identified a VHH clone termed 1E7 that displayed high affinity for human MET and was cross-reactive with MET across multiple species. When expressed as a bivalent human Fc fusion protein, 1E7-Fc was found to selectively bind to EBC-1 (MET amplified) and UW-Lung 21 (MET exon 14 mutated) cell lines by flow cytometry and immunofluorescence imaging. Next, we investigated the ability of [89Zr]Zr-1E7-Fc to detect MET expression in vivo by PET/CT imaging. [89Zr]Zr-1E7-Fc demonstrated rapid localization and high tumor uptake in both xenografts with a %ID/g of 6.4 and 5.8 for EBC-1 and UW-Lung 21 at 24 h, respectively. At the 24 h time point, clearance from secondary and nontarget tissues was also observed. Altogether, our data suggest that 1E7-Fc represents a platform technology that can be employed to potentially both image and treat MET-altered NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Anticuerpos de Dominio Único , Humanos , Carcinoma de Pulmón de Células no Pequeñas/patología , Neoplasias Pulmonares/patología , Tomografía de Emisión de Positrones/métodos , Tomografía Computarizada por Tomografía de Emisión de Positrones , Proteínas Proto-Oncogénicas c-met/genética , Proteínas Proto-Oncogénicas c-met/metabolismo , Línea Celular Tumoral
8.
Am J Nucl Med Mol Imaging ; 14(1): 31-40, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38500749

RESUMEN

Breast cancer (BrCa) ranks as the most prevalent malignant neoplasm affecting women worldwide. The expression of programmed death-ligand 1 (PD-L1) in BrCa has recently emerged as a biomarker for immunotherapy response, but traditional immunohistochemistry (IHC)-based methods are hindered by spatial and temporal heterogeneity. Noninvasive and quantitative PD-L1 imaging using appropriate radiotracers can serve to determine PD-L1 expression in tumors. This study aims to demonstrate the viability of PET imaging with 64Cu-labeled Durvalumab (abbreviated as Durva) to assess PD-L1 expression using a murine xenograft model of breast cancer. Durvalumab, a human IgG1 monoclonal antibody against PD-L1, was assessed for specificity in vitro in two cancer cell lines (MDA-MB-231 triple-negative breast cancer cell line and AsPC-1 pancreatic cancer cell line) with positive and negative PD-L1 expression by flow cytometry. Next, we performed the in vivo evaluation of 64Cu-NOTA-Durva in murine models of human breast cancer by PET imaging and ex vivo biodistribution. Additionally, mice bearing AsPC-1 tumors were employed as a negative control. Tumor uptake was quantified based on a 3D region-of-interest (ROI) analysis of the PET images and ex vivo biodistribution measurements, and the results were compared against conventional IHC testing. The radiotracer uptake was evident in MDA-MB-231 tumors and showed minimal nonspecific binding, corroborating IHC-derived results. The results of the biodistribution showed that the MDA-MB-231 tumor uptake of 64Cu-NOTA-Durva was much higher than 64Cu-NOTA-IgG (a nonspecific radiolabeled IgG). In Conclusion, 64Cu-labeled Durvalumab PET/CT imaging offers a promising, noninvasive approach to evaluate tumor PD-L1 expression.

9.
Bioconjug Chem ; 35(3): 412-418, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38411531

RESUMEN

Cobalt-sarcophagine complexes exhibit high kinetic inertness under various stringent conditions, but there is limited literature on radiolabeling and in vivo positron emission tomography (PET) imaging using no carrier added 55Co. To fill this gap, this study first investigates the radiolabeling of DiAmSar (DSar) with 55Co, followed by stability evaluation in human serum and EDTA, pharmacokinetics in mice, and a direct comparison with [55Co]CoCl2 to assess differences in pharmacokinetics. Furthermore, the radiolabeling process was successfully used to generate the NTSR1-targeted PET agent [55Co]Co-NT-Sarcage (a DSar-functionalized SR142948 derivative) and administered to HT29 tumor xenografted mice. The [55Co]Co-DSar complex can be formed at 37 °C with purity and stability suitable for preclinical in vivo radiopharmaceutical applications, and [55Co]Co-NT-Sarcage demonstrated prominent tumor uptake with a low background signal. In a direct comparison with [64Cu]Cu-NT-Sarcage, [55Co]Co-NT-Sarcage achieved a higher tumor-to-liver ratio but with overall similar biodistribution profile. These results demonstrate that Sar would be a promising chelator for constructing Co-based radiopharmaceuticals including 55Co for PET and 58mCo for therapeutic applications.


Asunto(s)
Radioisótopos de Cobalto , Ciclotrones , Neoplasias , Humanos , Animales , Ratones , Distribución Tisular , Xenoinjertos , Radioisótopos de Cobre/farmacocinética , Tomografía de Emisión de Positrones/métodos , Radiofármacos/farmacocinética , Línea Celular Tumoral
10.
Adv Funct Mater ; 33(33)2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37942189

RESUMEN

The therapeutic efficacy of photodynamic therapy is limited by the ability of light to penetrate tissues. Due to this limitation, Cerenkov luminescence (CL) from radionuclides has recently been proposed as an alternative light source in a strategy referred to as Cerenkov radiation induced therapy (CRIT). Semiconducting polymer nanoparticles (SPNs) have ideal optical properties, such as large absorption cross-sections and broad absorbance, which can be utilized to harness the relatively weak CL produced by radionuclides. SPNs can be doped with photosensitizers and have nearly 100% energy transfer efficiency by multiple energy transfer mechanisms. Herein, we investigated an optimized photosensitizer doped SPN as a nanosystem to harness and amplify CL for cancer theranostics. We found that semiconducting polymers significantly amplified CL energy transfer efficiency. Bimodal PET and optical imaging studies showed high tumor uptake and retention of the optimized SPNs when administered intravenously or intratumorally. Lastly, we found that photosensitizer doped SPNs have excellent potential as a cancer theranostics nanosystem in an in vivo tumor therapy study. Our study shows that SPNs are ideally suited to harness and amplify CL for cancer theranostics, which may provide a significant advancement for CRIT that are unabated by tissue penetration limits.

11.
Appl Radiat Isot ; 200: 110980, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37591186

RESUMEN

Cobalt-55 and -58m form a theranostic pair that has relevant properties for cancer research. We report a cation exchange chromatography/extraction chromatography method that separates cyclotron-produced 55/58mCo from 54/57Fe in <1.5 h, recovers >85% Co and achieves [55Co]Co-NOTA and -DOTA AMA 89 ± 48 and 35 ± 7 MBq/nmol (EOB), respectively. Cobalt-55 and -58m were quantitatively labeled to functionalized NOTA at 106 and 50 MBq/nmol (EOB), respectively, corroborating measured AMA. This method is faster than previously published methods and achieves better [55/58mCo]Co-NOTA and -DOTA AMA.

13.
Appl Radiat Isot ; 200: 110924, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37423061

RESUMEN

52gMn is a promising radionuclide for positron emission tomography (PET). Enriched 52Cr targets are required to minimize formation of 54Mn radioisotopic impurities during production with proton beams. The need for radioisotopically pure 52gMn, accessibility and cost of 52Cr, sustainability of the radiochemical process, and potential for iterative purification of target materials motivate this development of recyclable, electroplated 52Cr metal targets and radiochemical isolation and labeling with resulting >99.89% radionuclidically pure 52gMn. The run-to-run replating efficiency is 60 ± 20%, and unplated chromium from this method is recovered with 94% efficiency as 52CrCl3 hexahydrate. The decay-corrected molar activity of chemically isolated 52gMn for common chelating ligands was 376 MBq/µmol.

14.
Inorg Chem ; 62(50): 20655-20665, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-37523384

RESUMEN

The solution chemistry of the hydrolytic, early-transition-metal ions Ti4+ and Sc3+ represents a coordination chemistry challenge with important real-world implications, specifically in the context of 44Ti/44Sc and 45Ti/NatSc radiochemical separations. Unclear speciation of the solid and solution phases and tertiary mixtures of mineral acid, organic chelators, and solid supports are common confounds, necessitating tedious screening of multiple variables. Herein we describe how thermodynamic speciation data in solution informs the design of new solid-phase chelation approaches enabling separations of Ti4+ and Sc3+. The ligands catechol (benzene-1,2-diol) and deferiprone [3-hydroxy-1,2-dimethyl-4(1H)-pyridone] bind Ti4+ at significantly more acidic conditions (2-4 pH units) than Sc3+. Four chelating resins were synthesized using either catechol or deferiprone with two different solid supports. Of these, deferiprone appended to carboxylic acid polymer-functionalized silica (CA-Def) resin exhibited excellent binding affinity for Ti4+ across a wide range of HCl concentrations (1.0-0.001 M), whereas Sc3+ was only retained in dilute acidic conditions (0.01-0.001 M HCl). CA-Def resin produced separation factors of >100 (Ti/Sc) in 0.1-0.4 M HCl, and the corresponding Kd values (>1000) show strong retention of Ti4+. A model 44Ti/44Sc generator was produced, showing 65 ± 3% yield of 44Sc in 200 µL of 0.2 M HCl with a significant 44Ti breakthrough of 0.1%, precluding use in its current form. Attempts, however, removed natSc in loading fractions and a dilute (0.4 M HCl) wash and recovered 80% of the loaded 45Ti activity in 400 µL of 6 M HCl. The previously validated 45Ti chelator TREN-CAM was used for comparative proof-of-concept reactions with the CA-Def eluent (in HCl) and literature-reported hydroxamate-based resin eluents (in citric acid). CA-Def shows improved radiolabeling efficiency with an apparent molar activity (AMA) of 0.177 mCi nmol-1, exceeding the established methods (0.026 mCi nmol-1) and improving the separation and recovery of 45Ti for positron emission tomography imaging applications.

15.
Nucl Med Biol ; 122-123: 108352, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37390607

RESUMEN

Targeted Meitner-Auger Therapy (TMAT) has potential for personalized treatment thanks to its subcellular dosimetric selectivity, which is distinct from the dosimetry of ß- and α particle emission based Targeted Radionuclide Therapy (TRT). To date, most clinical and preclinical TMAT studies have used commercially available radionuclides. These studies showed promising results despite using radionuclides with theoretically suboptimal photon to electron ratios, decay kinetics, and electron emission spectra. Studies using radionuclides whose decay characteristics are considered more optimal are therefore important for evaluation of the full potential of Meitner-Auger therapy; 119Sb is among the best such candidates. In the present work, we develop radiochemical purification of 120Sb from irradiated natural tin targets for TMAT studies with 119Sb.


Asunto(s)
Antimonio , Electrones , Antimonio/uso terapéutico , Radioquímica , Radioisótopos/uso terapéutico , Radiofármacos/uso terapéutico
16.
RSC Chem Biol ; 4(6): 414-421, 2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37292057

RESUMEN

Short-lived, radioactive lanthanides comprise an emerging class of radioisotopes attractive for biomedical imaging and therapy applications. To deliver such isotopes to target tissues, they must be appended to entities that target antigens overexpressed on the target cell's surface. However, the thermally sensitive nature of biomolecule-derived targeting vectors requires the incorporation of these isotopes without the use of denaturing temperatures or extreme pH conditions; chelating systems that can capture large radioisotopes under mild conditions are therefore highly desirable. Herein, we demonstrate the successful radiolabeling of the lanthanide-binding protein, lanmodulin (LanM), with medicinally relevant radioisotopes: 177Lu, 132/135La and 89Zr. Radiolabeling of the endogenous metal-binding sites of LanM, as well exogenous labeling of a protein-appended chelator, was successfully conducted at 25 °C and pH 7 with radiochemical yields ranging from 20-82%. The corresponding radiolabeled constructs possess good formulation stability in pH 7 MOPS buffer over 24 hours (>98%) in the presence of 2 equivalents of natLa carrier. In vivo experiments with [177Lu]-LanM, [132/135La]-LanM, and a prostate cancer targeting-vector linked conjugate, [132/135La]-LanM-PSMA, reveal that endogenously labeled constructs produce bone uptake in vivo. Exogenous, chelator-tag mediated radiolabeling to produce [89Zr]-DFO-LanM enables further study of the protein's in vivo behavior, demonstrating low bone and liver uptake, and renal clearance of the protein itself. While these results indicate that additional stabilization of LanM is required, this study establishes precedence for the radiochemical labeling of LanM with medically relevant lanthanide radioisotopes.

17.
Front Chem ; 11: 1167783, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37179772

RESUMEN

Introduction: 43Sc and 44gSc are both positron-emitting radioisotopes of scandium with suitable half-lives and favorable positron energies for clinical positron emission tomography (PET) imaging. Irradiation of isotopically enriched calcium targets has higher cross sections compared to titanium targets and higher radionuclidic purity and cross sections than natural calcium targets for reaction routes possible on small cyclotrons capable of accelerating protons and deuterons. Methods: In this work, we investigate the following production routes via proton and deuteron bombardment on CaCO3 and CaO target materials: 42Ca(d,n)43Sc, 43Ca(p,n)43Sc, 43Ca(d,n)44gSc, 44Ca(p,n)44gSc, and 44Ca(p,2n)43Sc. Radiochemical isolation of the produced radioscandium was performed with extraction chromatography using branched DGA resin and apparent molar activity was measured with the chelator DOTA. The imaging performance of 43Sc and 44gSc was compared with 18F, 68Ga, and 64Cu on two clinical PET/CT scanners. Discussion: The results of this work demonstrate that proton and deuteron bombardment of isotopically enriched CaO targets produce high yield and high radionuclidic purity 43Sc and 44gSc. Laboratory capabilities, circumstances, and budgets are likely to dictate which reaction route and radioisotope of scandium is chosen.

18.
Clin Cancer Res ; 29(12): 2324-2335, 2023 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-36939530

RESUMEN

PURPOSE: Men with metastatic castration-resistant prostate cancer (mCRPC) frequently develop resistance to androgen receptor signaling inhibitor (ARSI) treatment; therefore, new therapies are needed. Trophoblastic cell-surface antigen (TROP-2) is a transmembrane protein identified in prostate cancer and overexpressed in multiple malignancies. TROP-2 is a therapeutic target for antibody-drug conjugates (ADC). EXPERIMENTAL DESIGN: TROP-2 gene (TACSTD2) expression and markers of treatment resistance from prostate biopsies were analyzed using data from four previously curated cohorts of mCRPC (n = 634) and the PROMOTE study (dbGaP accession phs001141.v1.p1, n = 88). EPCAM or TROP-2-positive circulating tumor cells (CTC) were captured from peripheral blood for comparison of protein (n = 15) and gene expression signatures of treatment resistance (n = 40). We assessed the efficacy of TROP-2-targeting agents in a mouse xenograft model generated from prostate cancer cell lines. RESULTS: We demonstrated that TACSTD2 is expressed in mCRPC from luminal and basal tumors but at lower levels in patients with neuroendocrine prostate cancer. Patients previously treated with ARSI showed no significant difference in TACSTD2 expression, whereas patients with detectable AR-V7 expression showed increased expression. We observed that TROP-2 can serve as a cell surface target for isolating CTCs, which may serve as a predictive biomarker for ADCs. We also demonstrated that prostate cancer cell line xenografts can be targeted specifically by labeled anti-TROP-2 agents in vivo. CONCLUSIONS: These results support further studies on TROP-2 as a therapeutic and diagnostic target for mCRPC.


Asunto(s)
Células Neoplásicas Circulantes , Neoplasias de la Próstata Resistentes a la Castración , Masculino , Humanos , Animales , Ratones , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Receptores Androgénicos/genética , Isoformas de Proteínas/genética , Células Neoplásicas Circulantes/patología , Antagonistas de Receptores Androgénicos/farmacología
19.
J Org Chem ; 88(4): 2089-2094, 2023 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-36745853

RESUMEN

A copper-mediated radiobromination of (hetero)aryl boronic pinacol esters is described. Cyclotron-produced [76/77Br]bromide was isolated using an anion exchange cartridge, wherein the pre-equilibration and elution solutions played a critical role in downstream deboro-bromination. The bromination tolerates a broad range of functional groups, labeling molecules with ranging electronic and steric effects. Bologically active radiopharmaceuticals were synthesized, including two radiobrominated inhibitors of poly ADP ribose polymerase, a clinically relevant chemotherapeutic target for ovarian, breast, and prostate cancers.


Asunto(s)
Cobre , Ésteres , Boro , Glicoles
20.
Nucl Med Biol ; 118-119: 108329, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36805869

RESUMEN

Neurotensin receptor 1 (NTSR1) can stimulate tumor proliferation through neurotensin (NTS) activation and are overexpressed by a variety of cancers. The high binding affinity of NTS/NTSR1 makes radiolabeled NTS derivatives interesting for cancer diagnosis and staging. Internalization of NTS/NTSR1 also suggests therapeutic application with high LET alpha particles and low energy electrons. We investigated the therapeutic efficacy of [58mCo]Co-NOTA-NT-20.3 in vivo using murine models xenografted with NTSR1-positive HT29 human colorectal adenocarcinoma cells, and utilized [55Co]Co-NOTA-NT-20.3 for dosimetry. METHODS: Targeting properties and cytotoxicity of [55/58mCo]Co-NOTA-NT-20.3 were assessed with HT29 cells. Female nude mice were xenografted with HT29 tumors and administered [55Co or 58mCo]Co-NOTA-NT-20.3 to evaluate pharmacokinetics or for therapy, respectively. Dosimetry calculations followed the Medical Internal Radiation Dose (MIRD) formalism and human absorbed dose rate per unit activity were obtained from OpenDose. The pilot therapy study consisted of two groups (each N = 3) receiving 110 ± 15 MBq and 26 ± 6 MBq [58mCo]Co-NOTA-NT-20.3 one week after tumor inoculation, and control (N = 3). Tumor sizes and masses were measured twice a week after therapy. Complete blood count and kidney histology were also performed to assess toxicity. RESULTS: HPLC measured radiochemical purity of [55,58mCo]Co-NOTA-NT-20.3 > 99 %. Labeled compounds retained NTS targeting properties. [58mCo]Co-NOTA-NT-20.3 exhibited cytotoxicity for HT29 cells and was >15× more potent than [58mCo]CoCl2. Xenografted tumors responded modestly to administered doses, but mice showed no signs of radiotoxicity. Absorbed dose to tumor and kidney with 110 MBq [58mCo]Co-NOTA-NT-20.3 were 0.6 Gy and 0.8 Gy, respectively, and other organs received less than half of the absorbed dose to tumor. Off-target radiation dose from cobalt-58g was small but reduces the therapeutic window. CONCLUSION: The enhanced in vitro cytotoxicity and high tumor-to-background led us to investigate the therapeutic efficacy of [58mCo]Co-NOTA-NT-20.3 in vivo. Although we were unable to induce tumor response commensurate with [177Lu]Lu-NT127 (NLys-Lys-Pro-Tyr-Tle-Leu) studies involving similar time-integrated activity, the absence of observed toxicity may constitute an opportunity for targeting vectors with improved uptake and/or retention to avoid the aftereffects of other high-LET radioactive emissions. Future studies with higher uptake, activity and/or multiple dosing regimens are warranted. The theranostic approach employed in this work was crucial for dosimetry analysis.


Asunto(s)
Medicina de Precisión , Receptores de Neurotensina , Femenino , Ratones , Humanos , Animales , Receptores de Neurotensina/metabolismo , Proyectos Piloto , Ratones Desnudos , Neurotensina/uso terapéutico , Neurotensina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA